

Git	Pocket	Guide

Richard	E.	Silverman

Beijing	•	Cambridge	•	Farnham	•	Köln	•	Sebastopol	•	Tokyo

Preface

What	Is	Git?
Git	is	a	tool	for	tracking	changes	made	to	a	set	of	files	over	time,	a	task
traditionally	known	as	“version	control.”	Although	it	is	most	often	used	by
programmers	to	coordinate	changes	to	software	source	code,	and	it	is	especially
good	at	that,	you	can	use	Git	to	track	any	kind	of	content	at	all.	Any	body	of
related	files	evolving	over	time,	which	we’ll	call	a	“project,”	is	a	candidate	for
using	Git.	With	Git,	you	can:

Examine	the	state	of	your	project	at	earlier	points	in	time

Show	the	differences	among	various	states	of	the	project

Split	the	project	development	into	multiple	independent	lines,	called
“branches,”	which	can	evolve	separately

Periodically	recombine	branches	in	a	process	called	“merging,”	reconciling
the	changes	made	in	two	or	more	branches

Allow	many	people	to	work	on	a	project	simultaneously,	sharing	and
combining	their	work	as	needed

…and	much	more.

There	have	been	many	different	version	control	systems	developed	in	the
computing	world,	including	SCCS,	RCS,	CVS,	Subversion,	BitKeeper,
Mercurial,	Bazaar,	Darcs,	and	others.	Some	particular	strengths	of	Git	are:

Git	is	a	member	of	the	newer	generation	of	distributed	version	control
systems.	Older	systems	such	as	CVS	and	Subversion	are	centralized,
meaning	that	there	is	a	single,	central	copy	of	the	project	content	and	history
to	which	all	users	must	refer.	Typically	accessed	over	a	network,	if	the	central
copy	is	unavailable	for	some	reason,	all	users	are	stuck;	they	cannot	use
version	control	until	the	central	copy	is	working	again.	Distributed	systems

such	as	Git,	on	the	other	hand,	have	no	inherent	central	copy.	Each	user	has	a
complete,	independent	copy	of	the	entire	project	history,	called	a
“repository,”	and	full	access	to	all	version	control	facilities.	Network	access	is
only	needed	occasionally,	to	share	sets	of	changes	among	people	working	on
the	same	project.

In	some	systems,	notably	CVS	and	Subversion,	branches	are	slow	and
difficult	to	use	in	practice,	which	discourages	their	use.	Branches	in	Git,	on
the	other	hand,	are	very	fast	and	easy	to	use.	Effective	branching	and	merging
allows	more	people	to	work	on	a	project	in	parallel,	relying	on	Git	to	combine
their	separate	contributions.

Applying	changes	to	a	repository	is	a	two-step	process:	you	add	the	changes
to	a	staging	area	called	the	“index,”	then	commit	those	changes	to	the
repository.	The	extra	step	allows	you	to	easily	apply	just	some	of	the	changes
in	your	current	working	files	(including	a	subset	of	changes	to	a	single	file),
rather	than	being	forced	to	apply	them	all	at	once,	or	undoing	some	of	those
changes	yourself	before	committing	and	then	redoing	them	by	hand.	This
encourages	splitting	changes	up	into	better	organized,	more	coherent	and
reusable	sets.

Git’s	distributed	nature	and	flexibility	allow	for	many	different	styles	of	use,
or	“workflows.”	Individuals	can	share	work	directly	between	their	personal
repositories.	Groups	can	coordinate	their	work	through	a	single	central
repository.	Hybrid	schemes	permit	several	people	to	organize	the
contributions	of	others	to	different	areas	of	a	project,	and	then	collaborate
among	themselves	to	maintain	the	overall	project	state.

Git	is	the	technology	behind	the	enormously	popular	“social	coding”	website
GitHub,	which	includes	many	well-known	open	source	projects.	In	learning
Git,	you	will	open	up	a	whole	world	of	collaboration	on	small	and	large
scales.

Goals	of	This	Book
There	are	already	several	good	books	available	on	Git,	including	Scott	Chacon’s
Pro	Git,	and	the	full-size	Version	Control	with	Git	by	Jon	Loeliger	(O’Reilly).	In
addition,	the	Git	software	documentation	(“man	pages”	on	Unix)	is	generally

http://github.com/
http://git-scm.com/book
http://shop.oreilly.com/product/9780596520137.do

well	written	and	complete.	So,	why	a	Git	Pocket	Guide?	The	primary	goal	of	this
book	is	to	provide	a	compact,	readable	introduction	to	Git	for	the	new	user,	as
well	as	a	reference	to	common	commands	and	procedures	that	will	continue	to
be	useful	once	you’ve	already	gotten	some	Git	under	your	belt.	The	man	pages
are	extensive	and	very	detailed;	sometimes,	it’s	difficult	to	peruse	them	for	just
the	information	you	need	for	simple	operations,	and	you	may	need	to	refer	to
several	different	sections	to	pull	together	the	pieces	you	need.	The	two	books
mentioned	are	similarly	weighty	tomes	with	a	wealth	of	detail.	This	Pocket
Guide	is	task	oriented,	organized	around	the	basic	functions	you	need	from
version	control:	making	commits,	fixing	mistakes,	merging,	searching	history,
and	so	on.	It	also	contains	a	streamlined	technical	introduction	whose	aim	is	to
make	sense	of	Git	generally	and	facilitate	understanding	of	the	operations
discussed,	rather	than	completeness	or	depth	for	its	own	sake.	The	intent	is	to
help	you	become	productive	with	Git	quickly	and	easily.

Since	this	book	does	not	aim	to	be	a	complete	reference	to	all	of	Git’s
capabilities,	there	are	Git	commands	and	functions	that	we	do	not	discuss.	We
often	mention	these	omissions	explicitly,	but	some	are	tacit.	Several	more
advanced	features	are	just	mentioned	and	described	briefly	so	that	you’re	aware
of	their	existence,	with	a	pointer	to	the	relevant	documentation.	Also,	the
sections	that	cover	specific	commands	usually	do	not	list	every	possible	option
or	mode	of	operation,	but	rather	the	most	common	or	useful	ones	that	fit	into	the
discussion	at	hand.	The	goal	is	simplicity	and	economy	of	explanation,	rather
than	exhaustive	detail.	We	do	provide	frequent	references	to	various	portions	of
the	Git	documentation,	where	you	can	find	more	complete	information	on	the
current	topic.	This	book	should	be	taken	as	an	introduction,	an	aid	to
understanding,	and	a	complement	to	the	full	documentation,	rather	than	as	a
replacement	for	it.

At	the	time	of	this	writing	in	early	2013,	Git	is	undergoing	rapid	development;
new	versions	appear	regularly	with	new	features	and	changes	to	existing	ones,	so
expect	that	by	the	time	you	read	this,	some	alterations	will	already	have
occurred;	that’s	just	the	nature	of	technical	writing.	This	book	describes	Git	as	of
version	1.8.2.

Conventions	Used	in	This	Book

Here	are	a	few	general	remarks	and	conventions	to	keep	in	mind	while	reading
this	book.

Unix
Git	was	created	in	the	Unix	environment,	originally	in	fact	both	for	and	by
people	working	on	the	core	of	the	Linux	operating	system.	Though	it	has	been
ported	to	other	platforms,	it	is	still	most	popular	on	Unix	variants,	and	its
commands,	design,	and	terminology	all	strongly	reflect	its	origin.	Especially	in	a
Pocket	Guide	format,	it	would	be	distracting	to	have	constant	asides	on	minor
differences	with	other	platforms,	so	for	simplicity	and	uniformity,	this	book
assumes	Unix	generally	in	its	descriptions	and	choice	of	examples.

Shell
All	command-line	examples	are	given	using	the	bash	shell	syntax.	Git	uses
characters	that	are	special	to	bash	and	other	shells	as	well,	such	as	*,	~,	and	?.
Remember	that	you	will	need	to	quote	these	in	order	to	prevent	the	shell	from
expanding	them	before	Git	sees	them.	For	example,	to	see	a	log	of	changes
pertaining	to	all	C	source	files,	you	need	something	like	this:

$ git log -- '*.c'

and	not	this:

$ git log -- *.c

The	latter	is	unpredictable,	as	the	shell	will	try	to	expand	*.c	in	the	current
context.	It	might	do	any	number	of	things;	few	of	them	are	likely	to	be	what	you
want.

The	examples	given	in	the	book	use	such	quoting	as	necessary.

Command	Syntax
We	employ	common	Unix	conventions	for	indicating	the	syntax	of	commands,
including:

--{foo,bar}	indicates	the	options	--foo	and	--bar.

Square	brackets	indicate	an	optional	element	that	may	appear	or	not;	e.g.,	--
where[=location]	means	that	you	may	either	use	--where	by	itself	(with
some	default	location)	or	give	a	specific	location,	perhaps	--where=Boston.

Typography
The	following	typographical	conventions	are	used	in	this	book:

Italic
Indicates	new	terms;	also,	Git	branches	are	normally	given	in	italic,	as
opposed	to	other	names	such	as	tags	and	commit	IDs,	which	are	given	in
constant	width.	Titles	to	Unix	man	pages	are	also	given	in	italics.

Constant width
Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program
elements	such	as	variable	or	function	names,	databases,	data	types,
environment	variables,	statements,	and	keywords.

Constant width bold
Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.

Constant	width	italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values
determined	by	context.

TIP

These	lines	signify	a	tip,	warning,	caution,	or	general	note.

Using	Code	Examples
This	book	is	here	to	help	you	get	your	job	done.	In	general,	if	this	book	includes
code	examples,	you	may	use	the	code	in	this	book	in	your	programs	and
documentation.	You	do	not	need	to	contact	us	for	permission	unless	you’re

reproducing	a	significant	portion	of	the	code.	For	example,	writing	a	program
that	uses	several	chunks	of	code	from	this	book	does	not	require	permission.
Selling	or	distributing	a	CD-ROM	of	examples	from	O’Reilly	books	does
require	permission.	Answering	a	question	by	citing	this	book	and	quoting
example	code	does	not	require	permission.	Incorporating	a	significant	amount	of
example	code	from	this	book	into	your	product’s	documentation	does	require
permission.

We	appreciate,	but	do	not	require,	attribution.	An	attribution	usually	includes	the
title,	author,	publisher,	and	ISBN.	For	example:	“Git	Pocket	Guide	by	Richard	E.
Silverman	(O’Reilly).	Copyright	2013	Richard	Silverman,	978-1-449-32586-2.”

If	you	feel	your	use	of	code	examples	falls	outside	fair	use	or	the	permission
given	above,	feel	free	to	contact	us	at	permissions@oreilly.com.

Safari®	Books	Online
Safari	Books	Online	is	an	on-demand	digital	library	that	delivers	expert	content
in	both	book	and	video	form	from	the	world’s	leading	authors	in	technology	and
business.

Technology	professionals,	software	developers,	web	designers,	and	business	and
creative	professionals	use	Safari	Books	Online	as	their	primary	resource	for
research,	problem	solving,	learning,	and	certification	training.

Safari	Books	Online	offers	a	range	of	product	mixes	and	pricing	programs	for
organizations,	government	agencies,	and	individuals.	Subscribers	have	access	to
thousands	of	books,	training	videos,	and	prepublication	manuscripts	in	one	fully
searchable	database	from	publishers	like	O’Reilly	Media,	Prentice	Hall
Professional,	Addison-Wesley	Professional,	Microsoft	Press,	Sams,	Que,
Peachpit	Press,	Focal	Press,	Cisco	Press,	John	Wiley	&	Sons,	Syngress,	Morgan
Kaufmann,	IBM	Redbooks,	Packt,	Adobe	Press,	FT	Press,	Apress,	Manning,
New	Riders,	McGraw-Hill,	Jones	&	Bartlett,	Course	Technology,	and	dozens
more.	For	more	information	about	Safari	Books	Online,	please	visit	us	online.

How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/

O’Reilly	Media,	Inc.

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

707-829-0515	(international	or	local)

707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any
additional	information.	You	can	access	this	page	at
http://oreil.ly/git_pocket_guide.

To	comment	or	ask	technical	questions	about	this	book,	send	email	to
bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our
website	at	http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

Acknowledgments
I	gratefully	acknowledge	the	support	and	patience	of	everyone	at	O’Reilly
involved	in	creating	this	book,	especially	my	editors	Meghan	Blanchette	and
Mike	Loukides,	during	a	book-writing	process	with	a	few	unexpected	challenges
along	the	way.	I	would	also	like	to	thank	my	technical	reviewers:	Robert	G.
Byrnes,	Max	Caceres,	Robert	P.	J.	Day,	Bart	Massey,	and	Lukas	Toth.	Their
attention	to	detail	and	thoughtful	criticism	have	made	this	a	much	better	book
than	it	would	otherwise	have	been.	All	errors	that	survived	their	combined
assault	are	mine	and	mine	alone.

I	dedicate	this	book	to	the	memory	of	my	grandmother,	Eleanor	Gorsuch
Jefferies	(19	May	1920–18	March	2012).

Richard	E.	Silverman
New	York	City,	15	April	2013

http://oreil.ly/git_pocket_guide
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Chapter	1.	Understanding	Git

In	this	initial	chapter,	we	discuss	how	Git	operates,	defining	important	terms	and
concepts	you	should	understand	in	order	to	use	Git	effectively.

Some	tools	and	technologies	lend	themselves	to	a	“black-box”	approach,	in
which	new	users	don’t	pay	too	much	attention	to	how	a	tool	works	under	the
hood.	You	concentrate	first	on	learning	to	manipulate	the	tool;	the	“why”	and
“how”	can	come	later.	Git’s	particular	design,	however,	is	better	served	by	the
opposite	approach,	in	that	a	number	of	fundamental	internal	design	decisions	are
reflected	directly	in	how	you	use	it.	By	understanding	up	front	and	in	reasonable
detail	several	key	points	about	its	operation,	you	will	be	able	to	come	up	to
speed	with	Git	more	quickly	and	confidently,	and	be	better	prepared	to	continue
learning	on	your	own.

Thus,	I	encourage	you	to	take	the	time	to	read	this	chapter	first,	rather	than	just
jump	over	it	to	the	more	tutorial,	hands-on	chapters	that	follow	(most	of	which
assume	a	basic	grasp	of	the	material	presented	here,	in	any	case).	You	will
probably	find	that	your	understanding	and	command	of	Git	will	grow	more
easily	if	you	do.

Overview
We	start	by	introducing	some	basic	terms	and	ideas,	the	general	notion	of
branching,	and	the	usual	mechanism	by	which	you	share	your	work	with	others
in	Git.

Terminology
A	Git	project	is	represented	by	a	“repository,”	which	contains	the	complete
history	of	the	project	from	its	inception.	A	repository	in	turn	consists	of	a	set	of
individual	snapshots	of	project	content—collections	of	files	and	directories—
called	“commits.”	A	single	commit	comprises	the	following:

A	project	content	snapshot,	called	a	“tree”
A	structure	of	nested	files	and	directories	representing	a	complete	state	of	the
project

The	“author”	identification
Name,	email	address,	and	date/time	(or	“timestamp”)	indicating	who	made
the	changes	that	resulted	in	this	project	state	and	when

The	“committer”	identification
The	same	information	about	the	person	who	added	this	commit	to	the
repository	(which	may	be	different	from	the	author)

A	“commit	message”
Text	used	to	comment	on	the	changes	made	by	this	commit

A	list	of	zero	or	more	“parent	commits”
References	to	other	commits	in	the	same	repository,	indicating	immediately
preceding	states	of	the	project	content

The	set	of	all	commits	in	a	repository,	connected	by	lines	indicating	their	parent
commits,	forms	a	picture	called	the	repository	“commit	graph,”	shown	in
Figure	1-1.

Figure	1-1.	The	repository	“commit	graph”

The	letters	and	numbers	here	represent	commits,	and	arrows	point	from	a
commit	to	its	parents.	Commit	A	has	no	parents	and	is	called	a	“root	commit”;	it
was	the	initial	commit	in	this	repository’s	history.	Most	commits	have	a	single
parent,	indicating	that	they	evolved	in	a	straightforward	way	from	a	single
previous	state	of	the	project,	usually	incorporating	a	set	of	related	changes	made
by	one	person.	Some	commits,	here	just	the	one	labeled	E,	have	multiple	parents
and	are	called	“merge	commits.”	This	indicates	that	the	commit	reconciles	the
changes	made	on	distinct	branches	of	the	commit	graph,	often	combining
contributions	made	separately	by	different	people.

Since	it	is	normally	clear	from	context	in	which	direction	the	history	proceeds—
usually,	as	here,	parent	commits	appear	to	the	left	of	their	children—we	will
omit	the	arrow	heads	in	such	diagrams	from	now	on.

Branches
The	labels	on	the	right	side	of	this	picture—master,	topic,	and	release—denote
“branches.”	The	branch	name	refers	to	the	latest	commit	on	that	branch;	here,
commits	F,	4,	and	Z,	respectively,	are	called	the	“tip”	of	the	branch.	The	branch
itself	is	defined	as	the	collection	of	all	commits	in	the	graph	that	are	reachable
from	the	tip	by	following	the	parent	arrows	backward	along	the	history.	Here,	the
branches	are:
release	=	{A,	B,	C,	X,	Y,	Z}

master	=	{A,	B,	C,	D,	E,	F,	1,	2}

topic	=	{A,	B,	1,	2,	3,	4}

Note	that	branches	can	overlap;	here,	commits	1	and	2	are	on	both	the	master
and	topic	branches,	and	commits	A	and	B	are	on	all	three	branches.	Usually,	you
are	“on”	a	branch,	looking	at	the	content	corresponding	to	the	tip	commit	on	that
branch.	When	you	change	some	files	and	add	a	new	commit	containing	the
changes	(called	“committing	to	the	repository”),	the	branch	name	advances	to
the	new	commit,	which	in	turn	points	to	the	old	commit	as	its	sole	parent;	this	is
the	way	branches	move	forward.	From	time	to	time,	you	will	tell	Git	to	“merge”
several	branches	(most	often	two,	but	there	can	be	more),	tying	them	together	as
at	commit	E	in	Figure	1-1.	The	same	branches	can	be	merged	repeatedly	over

time,	showing	that	they	continued	to	progress	separately	while	you	periodically
combined	their	contents.

The	first	branch	in	a	new	repository	is	named	master	by	default,	and	it’s
customary	to	use	that	name	if	there	is	only	one	branch	in	the	repository,	or	for
the	branch	that	contains	the	main	line	of	development	(if	that	makes	sense	for
your	project).	You	are	not	required	to	do	so,	however,	and	there	is	nothing
special	about	the	name	“master”	apart	from	convention,	and	its	use	as	a	default
by	some	commands.

Sharing	Work
There	are	two	contexts	in	which	version	control	is	useful:	private	and	public.
When	working	on	your	own,	it’s	useful	to	commit	“early	and	often,”	so	that	you
can	explore	different	ideas	and	make	changes	freely	without	worrying	about
recovering	earlier	work.	Such	commits	are	likely	to	be	somewhat	disorganized
and	have	cryptic	commit	messages,	which	is	fine	because	they	need	to	be
intelligible	only	to	you,	and	for	a	short	period	of	time.	Once	a	portion	of	your
work	is	finished	and	you’re	ready	to	share	it	with	others,	though,	you	may	want
to	reorganize	those	commits,	to	make	them	well-factored	with	regard	to
reusability	of	the	changes	being	made	(especially	with	software),	and	to	give
them	meaningful,	well-written	commit	messages.

In	centralized	version	control	systems,	the	acts	of	committing	a	change	and
publishing	it	for	others	to	see	are	one	and	the	same:	the	unit	of	publication	is	the
commit,	and	committing	requires	publishing	(applying	the	change	to	the	central
repository	where	others	can	immediately	see	it).	This	makes	it	difficult	to	use
version	control	in	both	private	and	public	contexts.	By	separating	committing
and	publishing,	and	giving	you	tools	with	which	to	edit	and	reorganize	existing
commits,	Git	encourages	better	use	of	version	control	overall.

With	Git,	sharing	work	between	repositories	happens	via	operations	called
“push”	and	“pull”:	you	pull	changes	from	a	remote	repository	and	push	changes
to	it.	To	work	on	a	project,	you	“clone”	it	from	an	existing	repository,	possibly
over	a	network	via	protocols	such	as	HTTP	and	SSH.	Your	clone	is	a	full	copy	of
the	original,	including	all	project	history,	completely	functional	on	its	own.	In
particular,	you	do	not	need	to	contact	the	first	repository	again	in	order	to
examine	the	history	of	your	clone	or	commit	to	it—however,	your	new

repository	does	retain	a	reference	to	the	original	one,	called	a	“remote.”	This
reference	includes	the	state	of	the	branches	in	the	remote	as	of	the	last	time	you
pulled	from	it;	these	are	called	“remote	tracking”	branches.	If	the	original
repository	contains	two	branches	named	master	and	topic,	their	remote-tracking
branches	in	your	clone	appear	qualified	with	the	name	of	the	remote	(by	default
called	“origin”):	origin/master	and	origin/topic.

Most	often,	the	master	branch	will	be	automatically	checked	out	for	you	when
you	first	clone	the	repository;	Git	initially	checks	out	whatever	the	current
branch	is	in	the	remote	repository.	If	you	later	ask	to	check	out	the	topic	branch,
Git	sees	that	there	isn’t	yet	a	local	branch	with	that	name—but	since	there	is	a
remote-tracking	branch	named	origin/topic,	it	automatically	creates	a	branch
named	topic	and	sets	origin/topic	as	its	“upstream”	branch.	This	relationship
causes	the	push/pull	mechanism	to	keep	the	changes	made	to	these	branches	in
sync	as	they	evolve	in	both	your	repository	and	in	the	remote.

When	you	pull,	Git	updates	the	remote-tracking	branches	with	the	current	state
of	the	origin	repository;	conversely,	when	you	push,	it	updates	the	remote	with
any	changes	you’ve	made	to	corresponding	local	branches.	If	these	changes
conflict,	Git	prompts	you	to	merge	the	changes	before	accepting	or	sending
them,	so	that	neither	side	loses	any	history	in	the	process.

If	you’re	familiar	with	CVS	or	Subversion,	a	useful	conceptual	shift	is	to
consider	that	a	“commit”	in	those	systems	is	analogous	to	a	Git	“push.”	You	still
commit	in	Git,	of	course,	but	that	affects	only	your	repository	and	is	not	visible
to	anyone	else	until	you	push	those	commits—and	you	are	free	to	edit,
reorganize,	or	delete	your	commits	until	you	do	so.

The	Object	Store
Now,	we	discuss	the	ideas	just	introduced	in	more	detail,	starting	with	the	heart
of	a	Git	repository:	its	object	store.	This	is	a	database	that	holds	just	four	kinds
of	items:	blobs,	trees,	commits,	and	tags.

Blob
A	blob	is	an	opaque	chunk	of	data,	a	string	of	bytes	with	no	further	internal
structure	as	far	as	Git	is	concerned.	The	content	of	a	file	under	version	control	is

represented	as	a	blob.	This	does	not	mean	the	implementation	of	blobs	is	naive;
Git	uses	sophisticated	compression	and	transmission	techniques	to	handle	blobs
efficiently.

Every	version	of	a	file	in	Git	is	represented	as	a	whole,	with	its	own	blob
containing	the	file’s	complete	contents.	This	stands	in	contrast	to	some	other
systems,	in	which	file	versions	are	represented	as	a	series	of	differences	from
one	revision	to	the	next,	starting	with	a	base	version.	Various	trade-offs	stem
from	this	design	point.	One	is	that	Git	may	use	more	storage	space;	on	the	other
hand,	it	does	not	have	to	reconstruct	files	to	retrieve	them	by	applying	layers	of
differences,	so	it	can	be	faster.	This	design	increases	reliability	by	increasing
redundancy:	corruption	of	one	blob	affects	only	that	file	version,	whereas
corruption	of	a	difference	affects	all	versions	coming	after	that	one.

Tree
A	Git	tree,	by	itself,	is	actually	what	one	might	usually	think	of	as	one	level	of	a
tree:	it	represents	a	single	level	of	directory	structure	in	the	repository	content.	It
contains	a	list	of	items,	each	of	which	has:

A	filename	and	associated	information	that	Git	tracks,	such	as	its	Unix
permissions	(“mode	bits”)	and	file	type;	Git	can	handle	Unix	“symbolic
links”	as	well	as	regular	files.

A	pointer	to	another	object.	If	that	object	is	a	blob,	then	this	item	represents	a
file;	if	it’s	another	tree,	a	directory.

There	is	an	ambiguity	here:	when	we	say	“tree,”	do	we	mean	a	single	object	as
just	described,	or	the	collection	of	all	such	objects	reachable	from	it	by	following
the	pointers	recursively	until	we	reach	the	terminal	blobs—that	is,	a	“tree”	in	the
more	usual	sense?	It	is	the	latter	notion	of	tree	that	this	data	structure	is	used	to
represent,	of	course,	and	fortunately,	it	is	seldom	necessary	in	practice	to	make
the	distinction.	When	we	say	“tree,”	we	will	normally	mean	the	entire	hierarchy
of	tree	and	blob	objects;	when	necessary,	we	will	use	the	phrase	“tree	object”	to
refer	to	the	specific,	individual	data	structure	component.

A	Git	tree,	then,	represents	a	portion	of	the	repository	content	at	one	point	in
time:	a	snapshot	of	a	particular	directory’s	content,	including	that	of	all
directories	beneath	it.

NOTE

Originally,	Git	saved	and	restored	the	full	permissions	on	files	(all	the	mode	bits).	Later,
however,	this	was	deemed	to	cause	more	trouble	than	it	was	worth,	so	the	interpretation	of	the
mode	bits	in	the	index	was	changed.	Now,	the	only	valid	values	for	the	low	12	bits	of	the	mode
as	stored	in	Git	are	octal	755	and	644,	and	these	simply	indicate	that	the	file	should	be
executable	or	not.	Git	sets	the	execute	bits	on	a	file	on	checkout	according	to	this,	but	the
actual	mode	value	may	be	different	depending	on	your	umask	setting;	for	example,	if	your
umask	is	0077,	then	a	file	stored	with	Git	mode	755	will	end	up	with	mode	700.

Commit
A	version	control	system	manages	content	changes,	and	the	commit	is	the
fundamental	unit	of	change	in	Git.	A	commit	is	a	snapshot	of	the	entire
repository	content,	together	with	identifying	information,	and	the	relationship	of
this	historical	repository	state	to	other	recorded	states	as	the	content	has	evolved
over	time.	Specifically,	a	commit	consists	of:

A	pointer	to	a	tree	containing	the	complete	state	of	the	repository	content	at
one	point	in	time.

Ancillary	information	about	this	change:	who	was	responsible	for	the	content
(the	“author”);	who	introduced	the	change	into	the	repository	(the
“committer”);	and	the	time	and	date	for	both	those	things.	The	act	of	adding	a
commit	object	to	the	repository	is	called	“making	a	commit,”	or	“committing
(to	the	repository).”

A	list	of	zero	or	more	other	commit	objects,	called	the	“parents”	of	this
commit.	The	parent	relationship	has	no	intrinsic	meaning;	however,	the
normal	ways	of	making	a	commit	are	meant	to	indicate	that	the	commit’s
repository	state	was	derived	by	the	author	from	those	of	its	parents	in	some
meaningful	way	(e.g.,	by	adding	a	feature	or	fixing	a	bug).	A	chain	of
commits,	each	having	a	single	parent,	indicates	a	simple	evolution	of
repository	state	by	discrete	steps	(and	as	we’ll	see,	this	constitutes	a	branch).
When	a	commit	has	more	than	one	parent,	this	indicates	a	“merge,”	in	which
the	committer	has	incorporated	the	changes	from	multiple	lines	of
development	into	a	single	commit.	We’ll	define	branches	and	merges	more
precisely	in	a	moment.

Of	course,	at	least	one	commit	in	the	repository	must	have	zero	parents,	or	else

the	repository	would	either	be	infinitely	large	or	have	loops	in	the	commit	graph,
which	is	not	allowed	(see	the	description	of	a	“DAG”	next).	This	is	called	a
“root	commit,”	and	most	often,	there	is	only	one	root	commit	in	a	repository—
the	initial	one	created	when	the	repository	was	started.	However,	you	can
introduce	multiple	root	commits	if	you	want;	the	command	git checkout --
orphan	does	this.	This	incorporates	multiple	independent	histories	into	a
repository,	perhaps	in	order	to	collect	the	contents	of	previously	separate	projects
(see	Importing	Disconnected	History).

Author	versus	Committer
The	separate	author	and	committer	information—name,	email	address,	and
timestamp—reflect	the	creation	of	the	commit	content	and	its	addition	to	the
repository,	respectively.	These	are	initially	the	same,	but	may	later	become
distinct	with	the	use	of	certain	Git	commands.	For	example,	git cherry-pick
replicates	an	existing	commit	by	reapplying	the	changes	introduced	by	that
commit	in	another	context.	Cherry-picking	carries	forward	the	author
information	from	the	original	commit,	while	adding	new	committer	information.
This	preserves	the	identification	and	origin	date	of	the	changes,	while	indicating
that	they	were	applied	at	another	point	in	the	repository	at	a	later	date,	possibly
by	a	different	person.	A	bugfix	cherry-picked	from	one	repository	to	another
might	look	like	this:

$ git log --format=fuller

commit d404534d

Author: Eustace Maushaven <eustace@qoxp.net>

AuthorDate: Thu Nov 29 01:58:13 2012 -0500

Commit: Richard E. Silverman <res@mlitg.com>

CommitDate: Tue Feb 26 17:01:33 2013 -0500

 Fix spin-loop bug in k5_sendto_kdc

 In the second part of the first pass over the

 server list, we passed the wrong list pointer to

 service_fds, causing it to see only a subset of

 the server entries corresponding to sel_state.

 This could cause service_fds to spin if an event

 is reported on an fd not in the subset.

 cherry-picked from upstream by res

 upstream commit 2b06a22f7fd8ec01fb27a7335125290b8…

Other	operations	that	do	this	are	git rebase	and	git filter-branch;	like	git
cherry-pick,	they	too	create	new	commits	based	on	existing	ones.

Cryptographic	Signature
A	commit	may	also	be	signed	using	GnuPG,	with:

$ git commit --gpg-sign[=keyid]

See	Cryptographic	Keys	regarding	Git’s	selection	of	a	key	identifier.

A	cryptographic	signature	binds	the	commit	to	a	particular	real-world	personal
identity	attached	to	the	key	used	for	signing;	it	verifies	that	the	commit’s
contents	are	the	same	now	as	they	were	when	that	person	signed	it.	The	meaning
of	the	signature,	though,	is	a	matter	of	interpretation.	If	I	sign	a	commit,	it	might
mean	that	I	glanced	at	the	diff;	verified	that	the	software	builds;	ran	a	test	suite;
prayed	to	Cthulhu	for	a	bug-free	release;	or	did	none	of	these.	Aside	from	being
a	convention	among	the	users	of	the	repository,	I	can	also	put	the	intention	of	my
signature	in	the	commit	message;	presumably,	I	will	not	sign	a	commit	without
at	least	reading	its	message.

Tag
A	tag	serves	to	distinguish	a	particular	commit	by	giving	it	a	human-readable
name	in	a	namespace	reserved	for	this	purpose.	Otherwise,	commits	are	in	a
sense	anonymous,	normally	referred	to	only	by	their	position	along	some	branch,
which	changes	with	time	as	the	branch	evolves	(and	may	even	disappear	if	the
branch	is	later	deleted).	The	tag	content	consists	of	the	name	of	the	person
making	the	tag,	a	timestamp,	a	reference	to	the	commit	being	tagged,	and	free-
form	text	similar	to	a	commit	message.

A	tag	can	have	any	meaning	you	like;	often,	it	identifies	a	particular	software
release,	with	a	name	like	coolutil-1.0-rc2	and	a	suitable	message.	You	can
cryptographically	sign	a	tag	just	as	you	can	a	commit,	in	order	to	verify	the	tag’s
authenticity.

NOTE

There	are	actually	two	kinds	of	tags	in	Git:	“lightweight”	and	“annotated.”	This	section	refers
to	annotated	tags,	which	are	represented	as	a	separate	kind	of	object	in	the	repository	database.
A	lightweight	tag	is	entirely	different;	it	is	simply	a	name	pointing	directly	to	a	commit	(see
the	upcoming	section	on	refs	to	understand	how	such	names	work	generally).

Object	IDs	and	SHA-1
A	fundamental	design	element	of	Git	is	that	the	object	store	uses	content-based
addressing.	Some	other	systems	assign	identifiers	to	their	equivalent	of	commits
that	are	relative	to	one	another	in	some	way,	and	reflect	the	order	in	which
commits	were	made.	For	example,	file	revisions	in	CVS	are	dotted	strings	of
numbers	such	as	2.17.1.3,	in	which	(usually)	the	numbers	are	simply	counters:
they	increment	as	you	make	changes	or	add	branches.	This	means	that	there	is
no	instrinsic	relationship	between	a	revision	and	its	identifier;	revision	2.17.1.3
in	someone	else’s	CVS	repository,	if	it	exists,	will	almost	certainly	be	different
from	yours.

Git,	on	the	other	hand,	assigns	object	identifiers	based	on	an	object’s	contents,
rather	than	on	its	relationship	to	other	objects,	using	a	mathematical	technique
called	a	hash	function.	A	hash	function	takes	an	arbitrary	block	of	data	and
produces	a	sort	of	fingerprint	for	it.	The	particular	hash	function	Git	uses,	called
SHA-1,	produces	a	160-bit	fixed-length	value	for	any	data	object	you	feed	it,	no
matter	how	large.

The	usefulness	of	hash-based	object	identifiers	in	Git	depends	on	treating	the
SHA-1	hash	of	an	object	as	unique;	we	assume	that	if	two	objects	have	the	same
SHA-1	fingerprint,	then	they	are	in	fact	the	same	object.	From	this	property	flow
a	number	of	key	points:

Single-instance	store
Git	never	stores	more	than	one	copy	of	a	file.	It	can’t—if	you	add	a	second
copy	of	the	file,	it	will	hash	the	file	contents	to	find	its	SHA-1	object	ID,
look	in	the	database,	and	find	that	it’s	already	there.	This	is	also	a
consequence	of	the	separation	of	a	file’s	contents	from	its	name.	Trees	map
filenames	onto	blobs	in	a	separate	step,	to	determine	the	contents	of	a
particular	filename	at	any	given	commit,	but	Git	does	not	consider	the	name
or	other	properties	of	a	file	when	storing	it,	only	its	contents.

Efficient	comparisons
As	part	of	managing	change,	Git	is	constantly	comparing	things:	files	against
other	files,	changed	files	against	existing	commits,	as	well	as	one	commit
against	another.	It	compares	whole	repository	states,	which	might	encompass
hundreds	or	thousands	of	files,	but	it	does	so	with	great	efficiency	because	of
hashing.	When	comparing	two	trees,	for	example,	if	it	finds	that	two	subtrees
have	the	same	ID,	it	can	immediately	stop	comparing	those	portions	of	the
trees,	no	matter	how	many	layers	of	directories	and	files	might	remain.	Why?
We	said	earlier	that	a	tree	object	contains	“pointers”	to	its	child	objects,
either	blobs	or	other	trees.	Well,	those	pointers	are	the	objects’	SHA-1	IDs.	If
two	trees	have	the	same	ID,	then	they	have	the	same	contents,	which	means
they	must	contain	the	same	child	object	IDs,	which	means	that	in	turn	those
objects	must	also	be	the	same!	Inductively,	we	see	immediately	that	in	fact,
the	entire	contents	of	the	two	trees	must	be	identical,	if	the	uniqueness
property	assumed	previously	holds.

Database	sharing
Git	repositories	can	share	their	object	databases	at	any	level	with	impunity
because	there	can	be	no	aliasing;	the	binding	between	an	ID	and	the	content
to	which	it	refers	is	immutable.	One	repository	cannot	mess	up	another’s
object	store	by	changing	the	data	out	from	under	it;	in	that	sense,	an	object
store	can	only	be	expanded,	not	changed.	We	do	still	have	to	worry	about
removing	objects	that	another	database	is	using,	but	that’s	a	much	easier
problem	to	solve.

Much	of	the	power	of	Git	stems	from	content-based	addressing—but	if	you	think
for	a	moment,	it’s	based	on	a	lie!	We	are	claiming	that	the	SHA-1	hash	of	a	data
object	is	unique,	but	that’s	mathematically	impossible:	because	the	hash	function
output	has	a	fixed	length	of	160	bits,	there	are	exactly	2160	IDs—but	infinitely
many	potential	data	objects	to	hash.	There	have	to	be	duplications,	called	“hash
collisions.”	The	whole	system	appears	fatally	flawed.

The	solution	to	this	problem	lies	in	what	constitutes	a	“good”	hash	function,	and
the	odd-sounding	notion	that	while	SHA-1	cannot	be	mathematically	collision-
free,	it	is	what	we	might	call	effectively	so.	For	the	practical	purposes	of	Git,	I’m
not	necessarily	concerned	if	there	are	in	fact	other	files	that	might	have	the	same
ID	as	one	of	mine;	what	really	matters	is	whether	any	of	those	files	are	at	all

likely	to	ever	appear	in	my	project,	or	in	anyone	else’s.	Maybe	all	the	other	files
are	over	10	trillion	bytes	long,	or	will	never	match	any	program	or	text	in	any
programming,	object,	or	natural	language	ever	invented	by	humanity.	This	is
exactly	a	property	(among	others)	that	researchers	endeavor	to	build	into	hash
functions:	the	relationship	between	changes	in	the	input	and	output	is	extremely
sensitive	and	wildly	unpredictable.	Changing	a	single	bit	in	a	file	causes	its
SHA-1	hash	to	change	radically,	and	flipping	a	different	bit	in	that	file,	or	the
same	bit	in	a	different	file,	will	scramble	the	hash	in	a	way	that	has	no
recognizable	relationship	to	the	other	changes.	Thus,	it	is	not	that	SHA-1	hash
collisions	cannot	happen—it	is	just	that	we	believe	them	to	be	so	astronomically
unlikely	in	practice	that	we	simply	don’t	care.

Of	course,	discussing	precise	mathematical	topics	in	general	terms	is	fraught
with	hazard;	this	description	is	intended	to	communicate	the	essence	of	why	we
rely	upon	SHA-1	to	do	its	job,	not	to	prove	anything	rigorously	or	even	to	give
justification	for	these	claims.

Security
SHA-1	stands	for	“Secure	Hash	Algorithm	1,”	and	its	name	reflects	the	fact	that
it	was	designed	for	use	in	cryptography.	“Hashing”	is	a	basic	technique	in
computer	science,	with	applications	to	many	areas	besides	security,	including
signal	processing,	searching	and	sorting	algorithms,	and	networking	hardware.	A
“cryptographically	secure”	hash	function	like	SHA-1	has	related	but	distinct
properties	to	those	already	mentioned	with	respect	to	Git;	it	is	not	just
extraordinarily	unlikely	that	two	distinct	trees	arising	in	practice	will	produce	the
same	commit	ID,	but	it	should	also	be	effectively	impossible	for	someone	to
deliberately	find	two	such	trees,	or	to	find	a	second	tree	with	the	same	ID	as	a
given	one.	These	features	make	a	hash	function	useful	in	security	as	well	as	for
more	general	purposes,	since	with	them	it	can	defend	against	deliberate
tampering	as	well	as	ordinary	or	accidental	changes	to	data.

Because	SHA-1	is	a	cryptographic	hash	function,	Git	inherits	certain	security
properties	from	its	use	of	SHA-1	as	well	as	operational	ones.	If	I	tag	a	particular
commit	of	security-sensitive	software,	it	is	not	feasible	for	an	attacker	to
substitute	a	commit	with	the	same	ID	in	which	he	has	embedded	a	backdoor;	as
long	as	I	record	the	commit	ID	securely	and	compare	it	correctly,	the	repository

is	tamper	proof	in	this	regard.	As	explained	earlier,	the	chained	use	of	SHA-1
causes	the	tag’s	ID	to	cover	the	entire	content	of	the	tagged	commit’s	tree.	The
addition	of	GnuPG	digital	signatures	allows	individuals	to	vouch	for	the	contents
of	entire	repository	states	and	history,	in	a	way	that	is	impractical	to	forge.

Cryptographic	research	is	always	ongoing,	though,	and	computing	power
increases	every	year;	other	hash	functions	such	as	MD5	that	were	once
considered	secure	have	been	deprecated	due	to	such	advances.	We	have
developed	more	secure	versions	of	SHA	itself,	in	fact,	and	as	of	this	writing	in
early	2013,	serious	weaknesses	in	SHA-1	have	recently	been	discovered.	The
criteria	used	to	appraise	hash	functions	for	cryptographic	use	are	very
conservative,	so	these	weaknesses	are	more	theoretical	than	practical	at	the
moment,	but	they	are	meaningful	nonetheless.	The	good	news	is	that	further
cryptographic	breaks	of	SHA-1	will	not	affect	the	usefulness	of	Git	as	a	version
control	system	per	se;	that	is,	make	it	more	likely	in	practice	that	Git	will	treat
distinct	commits	as	identical	(that	would	be	disastrous).	They	will	affect	the
security	properties	Git	enjoys	as	a	result	of	using	SHA-1,	but	those,	while
important,	are	critical	to	a	smaller	number	of	people	(and	those	security	goals
can	mostly	be	met	in	other	ways	if	need	be).	In	any	case,	it	will	be	possible	to
switch	Git	to	using	a	different	hash	function	when	it	becomes	necessary—and
given	the	current	state	of	research,	it	would	probably	be	wise	to	do	that	sooner
rather	than	later.

Where	Objects	Live
In	a	Git	repository,	objects	are	stored	under	.git/objects.	They	may	be	stored
individually	as	“loose”	objects,	one	per	file	with	pathnames	built	from	their
object	IDs:

$ find .git/objects -type f

.git/objects/08/5cf6be546e0b950e0cf7c530bdc78a6d5a78db

.git/objects/0d/55bed3a35cf47eefff69beadce1213b1f64c39

.git/objects/19/38cbe70ea103d7185a3831fd1f12db8c3ae2d3

.git/objects/1a/473cac853e6fc917724dfc6cbdf5a7479c1728

.git/objects/20/5f6b799e7d5c2524468ca006a0131aa57ecce7

...

They	may	also	be	collected	into	more	compact	data	structures	called	“packs,”

which	appear	as	paired	.idx	and	.pack	files:

$ ls .git/objects/pack/

pack-a18ec63201e3a5ac58704460b0dc7b30e4c05418.idx

pack-a18ec63201e3a5ac58704460b0dc7b30e4c05418.pack

Git	automatically	rearranges	the	object	store	over	time	to	improve	performance;
for	example,	when	it	sees	that	there	are	many	loose	objects,	it	automatically
coalesces	them	into	packs	(though	you	can	do	this	by	hand;	see	git-repack(1)).
Don’t	assume	that	objects	will	be	represented	in	any	particular	way;	always	use
Git	commands	to	access	the	object	database,	rather	than	digging	around	in	.git
yourself.

The	Commit	Graph
The	collection	of	all	commits	in	a	repository	forms	what	in	mathematics	is	called
a	graph:	visually,	a	set	of	objects	with	lines	drawn	between	some	pairs	of	them.
In	Git,	the	lines	represent	the	commit	parent	relationship	previously	explained,
and	this	structure	is	called	the	“commit	graph”	of	the	repository.

Because	of	the	way	Git	works,	there	is	some	extra	structure	to	this	graph:	the
lines	can	be	drawn	with	arrows	pointing	in	one	direction	because	a	commit
refers	to	its	parent,	but	not	the	other	way	around	(we’ll	see	later	the	necessity
and	significance	of	this).	Again	using	a	mathematical	term,	this	makes	the	graph
“directed.”	The	commit	graph	might	be	a	simple	linear	history,	as	shown	in
Figure	1-2.

Figure	1-2.	A	linear	commit	graph

Or	a	complex	picture	involving	many	branches	and	merges,	as	shown	in
Figure	1-3.

Figure	1-3.	A	more	complex	commit	graph

Those	are	the	next	topics	we’ll	touch	on.

WHAT’S	A	DAG?

Git,	by	design,	will	not	ever	produce	a	graph	that	contains	a	loop;	that	is,	a	way	to	follow	the	arrows
from	one	commit	to	another	so	that	you	arrive	at	the	same	commit	twice	(think	what	that	could
possibly	mean	in	terms	of	a	history	of	changes!).	This	is	called	being	“acyclic”:	not	having	a	cycle,	or
loop.	Thus	the	commit	graph	is	technically	a	“directed	acyclic	graph,”	or	DAG	for	short.

Refs
Git	defines	two	kinds	of	references,	or	named	pointers,	which	it	calls	“refs”:

A	simple	ref,	which	points	directly	to	an	object	ID	(usually	a	commit	or	tag)

A	symbolic	ref	(or	symref),	which	points	to	another	ref	(either	simple	or
symbolic)

These	are	analogous	to	“hard	links”	and	“symbolic	links”	in	a	Unix	filesystem.

Git	uses	refs	to	name	things,	including	commits,	branches,	and	tags.	Refs	inhabit
a	hierarchical	namespace	separated	by	slashes	(as	with	Unix	filenames),	starting
at	refs/.	A	new	repository	has	at	least	refs/tags/	and	refs/heads/,	to	hold
the	names	of	tags	and	local	branches,	respectively.	There	is	also
refs/remotes/,	holding	names	referring	to	other	repositories;	these	contain
beneath	them	the	ref	namespaces	of	those	repositories,	and	are	used	in	push	and

pull	operations.	For	example,	when	you	clone	a	repository,	Git	creates	a
“remote”	named	origin	referring	to	the	source	repository.

There	are	various	defaults,	which	means	that	you	don’t	often	have	to	refer	to	a
ref	by	its	full	name;	for	example,	in	branch	operations,	Git	implicitly	looks	in
refs/heads/	for	the	name	you	give.

Related	Commands
These	are	low-level	commands	that	directly	display,	change,	or	delete	refs.	You
don’t	ordinarily	need	these,	as	Git	usually	handles	refs	automatically	as	part	of
dealing	with	the	objects	they	represent,	such	as	branches	and	tags.	If	you	change
refs	directly,	be	sure	you	know	what	you’re	doing!

git show-ref
Display	refs	and	the	objects	to	which	they	refer

git symbolic-ref
Deals	with	symbolic	refs	specifically

git update-ref
Change	the	value	of	a	ref

git for-each-ref
Apply	an	action	to	a	set	of	refs

WARNING

Refs	often	live	in	corresponding	files	and	directories	under	.git/refs;	however,	don’t	get	in
the	habit	of	looking	for	or	changing	them	directly	there,	since	there	are	cases	in	which	they	are
stored	elsewhere	(in	“packs,”	in	fact,	as	with	objects),	and	changing	one	might	involve	other
operations	you	don’t	know	about.	Always	use	Git	commands	to	manipulate	refs.

Branches
A	Git	branch	is	the	simplest	thing	possible:	a	pointer	to	a	commit,	as	a	ref.	Or
rather,	that	is	its	implementation;	the	branch	itself	is	defined	as	all	points

reachable	in	the	commit	graph	from	the	named	commit	(the	“tip”	of	the	branch).
The	special	ref	HEAD	determines	what	branch	you	are	on;	if	HEAD	is	a
symbolic	ref	for	an	existing	branch,	then	you	are	“on”	that	branch.	If,	on	the
other	hand,	HEAD	is	a	simple	ref	directly	naming	a	commit	by	its	SHA-1	ID,
then	you	are	not	“on”	any	branch,	but	rather	in	“detached	HEAD”	mode,	which
happens	when	you	check	out	some	earlier	commit	to	examine.	Let’s	see:

HEAD points to the master branch

$ git symbolic-ref HEAD

refs/heads/master

Git agrees; I’m on the master branch.

$ git branch

* master

Check out a tagged commit, not at a branch tip.

$ git checkout mytag

Note: checking out 'mytag'.

You are in 'detached HEAD' state...

Confirmed: HEAD is no longer a symbolic ref.

$ git symbolic-ref HEAD

fatal: ref HEAD is not a symbolic ref

What is it? A commit ID...

$ git rev-parse HEAD

1c7ed724236402d7426606b03ee38f34c662be27

... which matches the commit referred to by the

tag.

$ git rev-parse mytag^{commit}

1c7ed724236402d7426606b03ee38f34c662be27

Git agrees; we’re not on any branch.

$ git branch

* (no branch)

 master

The	HEAD	commit	is	also	often	referred	to	as	the	“current”	commit.	If	you	are
on	a	branch,	it	may	also	be	called	the	“last”	or	“tip”	commit	of	the	branch.

A	branch	evolves	over	time;	thus,	if	you	are	on	the	branch	master	and	make	a
commit,	Git	does	the	following:

1.	 Creates	a	new	commit	with	your	changes	to	the	repository	content

2.	 Makes	the	commit	at	the	current	tip	of	the	master	branch	the	parent	of	the
new	commit

3.	 Adds	the	new	commit	to	the	object	store

4.	 Changes	the	master	branch	(specifically,	the	ref	refs/heads/master)	to
point	to	the	new	commit

In	other	words,	Git	adds	the	new	commit	to	the	end	of	the	branch	using	the
commit’s	parent	pointer,	and	advances	the	branch	ref	to	the	new	commit.

Note	a	few	consequences	of	this	model:
Considered	individually,	a	commit	is	not	intrinsically	a	part	of	any	branch.
There	is	nothing	in	the	commit	itself	to	tell	you	by	name	which	branches	it	is
or	may	once	have	been	on;	branch	membership	is	a	consequence	of	the
commit	graph	and	the	current	branch	pointers.

“Deleting”	a	branch	means	simply	deleting	the	corresponding	ref;	it	has	no
immediate	effect	on	the	object	store.	In	particular,	deleting	a	branch	does	not
delete	any	commits.	What	it	may	do,	however,	is	make	certain	commits
uninteresting,	in	that	they	are	no	longer	on	any	branch	(that	is,	no	longer
reachable	in	the	commit	graph	from	any	branch	tip	or	tag).	If	this	state
persists,	Git	will	eventually	remove	such	commits	from	the	object	store	as
part	of	garbage	collection.	Until	that	happens,	though,	if	you	have	an
abandoned	commit’s	ID	you	can	still	directly	access	it	perfectly	well	by	its
SHA-1	name;	the	Git	reflog	(git log -g)	is	useful	in	this	regard.

By	this	definition,	a	branch	can	include	more	than	just	commits	made	while
on	that	branch;	it	also	contains	commits	from	branches	that	flow	into	this	one
via	an	earlier	merge.	For	example:	here,	the	branch	topic	was	merged	into
master	at	commit	C,	then	both	branches	continued	to	evolve	separately,	as
shown	in	Figure	1-4.

Figure	1-4.	A	simple	merge

At	this	point,	git log	on	the	master	branch	shows	not	only	commits	A	through
D	as	you	would	expect,	but	also	commits	1	and	2,	since	they	are	also	reachable
from	D	via	C.	This	may	be	surprising,	but	it’s	just	a	different	way	of	defining	the
idea	of	a	branch:	as	the	set	of	all	commits	that	contributed	content	to	the	latest
commit.	You	can	generally	get	the	effect	of	looking	“only	at	the	history	of	this
branch”—even	though	that’s	not	really	well	defined—with	git log --first-
parent.

The	Index
The	Git	“index”	often	seems	a	bit	mysterious	to	people:	some	invisible,	ineffable
place	where	changes	are	“staged”	until	they’re	committed.	The	talk	about
“staging	changes”	in	the	index	also	suggests	that	it	holds	only	changes,	as	if	it
were	a	collection	of	diffs	waiting	to	be	applied.	The	truth	is	different	and	quite
simple,	and	critical	to	grasp	in	order	to	understand	Git	well.	The	index	is	an
independent	data	structure,	separate	from	both	your	working	tree	and	from	any
commit.	It	is	simply	a	list	of	file	pathnames	together	with	associated	attributes,
usually	including	the	ID	of	a	blob	in	the	object	database	holding	the	data	for	a
version	of	that	file.	You	can	see	the	current	contents	of	the	index	with	git ls-
files:

$ git ls-files --abbrev --stage

100644 2830ea0b 0 TODO

100644 a4d2acee 0 VERSION

100644 ce30ff91 0 acinclude.m4

100644 236d5f93 0 configure.ac

...

The	--stage	option	means	to	show	just	the	index;	git ls-files	can	show
various	combinations	and	subsets	of	the	index	and	your	working	tree,	generally.
If	you	were	to	delete	or	change	any	of	the	listed	files	in	your	working	tree,	this
would	not	affect	the	output	of	this	command	at	all;	it’s	not	looking	at	them.	Key
facts	about	the	index:

The	index	is	the	implicit	source	of	the	content	for	a	normal	commit.	When
you	use	git commit	(without	supplying	specific	pathnames),	you	might
think	that	it	creates	the	new	commit	based	on	your	working	files.	It	does	not;
instead,	it	simply	realizes	the	current	index	as	a	new	tree	object,	and	makes
the	new	commit	from	that.	This	is	why	you	need	to	“stage”	a	changed	file	in
the	index	with	git add	in	order	for	it	to	be	part	of	the	next	commit.

The	index	does	not	just	contain	changes	to	be	made	on	the	next	commit;	it	is
the	next	commit,	a	complete	catalog	of	the	files	that	will	be	included	in	the
tree	of	the	next	commit	(recall	that	each	commit	refers	to	a	tree	object	that	is
a	complete	snapshot	of	the	repository	content).	When	you	check	out	a	branch,
Git	resets	the	index	to	match	the	tip	commit	of	that	branch;	you	then	modify
the	index	with	commands	such	as	git add/mv/rm	to	indicate	changes	to	be
part	of	the	next	commit.

git add	does	not	just	note	in	the	index	that	a	file	has	changed;	it	actually
adds	the	current	file	content	to	the	object	database	as	a	new	blob,	and	updates
the	index	entry	for	that	file	to	refer	to	that	blob.	This	is	why	git commit	is
always	fast,	even	if	you’re	making	lots	of	changes:	all	the	actual	data	has
already	been	stored	by	preceding	git add	commands.

An	implication	of	this	behavior	that	occasionally	confuses	people	is	that	if
you	change	a	file,	git add	it,	then	change	it	again,	it	is	the	version	you	last
added	to	the	index,	not	the	one	in	your	working	tree,	that	is	part	of	the	next
commit.	git status	shows	this	explicitly,	by	listing	the	same	file	as	having
both	“changes	to	be	committed”	and	“changes	not	staged	for	commit.”

Similar	to	git commit,	git diff	without	arguments	also	has	the	index	as	an
implicit	operand;	it	shows	the	differences	between	your	working	tree	and	the

index,	rather	than	the	current	commit.	Initially	these	are	the	same,	as	the
index	matches	the	last	commit	after	a	clean	checkout	or	commit.	As	you
make	changes	to	your	working	files,	these	show	up	in	the	output	of	git
diff,	then	disappear	as	you	add	the	corresponding	files.	The	idea	is	that	git
diff	shows	changes	not	yet	staged	for	commit,	so	you	can	see	what	you	have
yet	to	deal	with	(or	have	deliberately	not	included)	as	you	prepare	the	next
commit.	git diff	--staged	shows	the	opposite:	the	differences	between	the
index	and	the	current	commit	(that	is,	the	changes	that	are	about	to	be
committed).

Merging
Merging	is	the	complement	of	branching	in	version	control:	a	branch	allows	you
to	work	simultaneously	with	others	on	a	particular	set	of	files,	whereas	a	merge
allows	you	to	later	combine	separate	work	on	two	or	more	branches	that
diverged	earlier	from	a	common	ancestor	commit.	Here	are	two	common	merge
scenarios:

1.	 You	are	working	by	yourself	on	a	software	project.	You	decide	to	explore
refactoring	your	code	in	a	certain	way,	so	you	make	a	branch	named
refactor	off	of	the	master	branch.	You	can	make	any	changes	you	like	on
the	refactor	branch	without	disturbing	the	main	line	of	development.

After	a	while,	you’re	happy	with	the	refactoring	you’ve	done	and	want	to
keep	it,	so	you	switch	to	the	master	branch	and	run	git merge refactor.
Git	applies	the	changes	you’ve	made	on	both	branches	since	they	diverged,
asking	for	your	help	in	resolving	any	conflicts,	then	commits	the	result.
You	delete	the	refactor	branch,	and	move	on.

2.	 You	have	been	working	on	the	master	branch	of	a	cloned	repository	and
have	made	several	commits	over	a	day	or	two.	You	then	run	git pull	to
update	your	clone	with	the	latest	work	committed	to	the	origin	repository.
It	happens	that	others	have	also	committed	to	the	origin	master	branch	in
the	meantime,	so	Git	performs	an	automatic	merge	of	master	and
origin/master	and	commits	this	to	your	master	branch.	You	can	then
continue	with	your	work	or	push	to	the	origin	repository	now	that	you	have
incorporated	its	latest	changes	with	your	own.	See	Push	and	Pull.

There	are	two	aspects	to	merging	in	Git:	content	and	history.

Merging	Content
What	it	means	to	successfully	“merge”	two	or	more	sets	of	changes	to	the	same
file	depends	on	the	nature	of	the	contents.	Git	will	try	to	merge	automatically,
and	often	call	it	a	success	if	the	two	changesets	altered	non-overlapping	portions
of	the	file.	Whether	you	will	call	that	a	success,	however,	is	a	different	question.
If	the	file	is	chapter	three	of	your	next	novel,	then	perhaps	such	a	merge	would
be	fine	if	you	were	making	minor	grammar	and	style	corrections.	If	you	were
reworking	the	plot	line,	on	the	other	hand,	the	results	could	be	less	useful—
perhaps	you	added	a	paragraph	on	one	branch	that	depends	on	details	contained
in	a	later	paragraph	that	was	deleted	on	another	branch.	Even	if	the	contents	are
programming	source	code,	such	a	merge	is	not	guaranteed	to	be	useful.	You
could	change	two	separate	subroutines	in	a	way	that	causes	them	to	fail	when
actually	used;	they	might	now	make	incompatible	assumptions	about	some
shared	data	structure,	for	example.	Git	doesn’t	even	check	to	see	that	your	code
still	compiles;	that’s	up	to	you.

Within	these	limitations,	though,	Git	has	very	sophisticated	mechanisms	for
presenting	merge	conflicts	and	helping	you	to	resolve	them.	It	is	optimized	for
the	most	common	use	case:	line-oriented	textual	data,	often	in	computer
programming	languages.	It	has	different	strategies	and	options	for	determining
“matching”	portions	of	files,	which	you	can	use	when	the	defaults	don’t	produce
adequate	results.	You	can	interactively	choose	sets	of	changes	to	apply,	skip,	or
further	edit.	To	handle	complex	merges,	Git	works	smoothly	with	external	merge
tools	such	as	araxis,	emerge,	and	kdiff,	or	with	custom	merge	tools	you	write
yourself.

Merging	History
When	Git	has	done	what	it	can	automatically,	and	you	have	resolved	any
remaining	conflicts,	it’s	time	to	commit	the	result.	If	we	just	make	a	commit	to
the	current	branch	as	usual,	though,	we’ve	lost	critical	information:	the	fact	that
a	merge	occurred	at	all,	and	which	branches	were	involved.	You	might
remember	to	include	this	information	in	the	commit	message,	but	it’s	best	not	to
depend	on	that;	more	importantly,	Git	needs	to	know	about	the	merge	in	order	to

do	a	good	job	of	merging	in	the	future.	Otherwise,	the	next	time	you	merge	the
same	branches	(say,	to	periodically	update	one	with	continuing	changes	on	the
other),	Git	won’t	know	which	changes	have	already	been	merged	and	which	are
new.	It	may	end	up	flagging	as	conflicts	changes	you	have	already	considered
and	handled,	or	automatically	applying	changes	you	previously	decided	to
discard.

The	way	Git	records	the	fact	of	a	merge	is	very	simple.	Recall	from	The	Object
Store	that	a	commit	has	a	list	of	zero	or	more	“parent	commits.”	The	initial
commit	in	a	repository	has	no	parents,	and	a	simple	commit	to	a	branch	has	just
one.	When	you	commit	as	part	of	a	merge,	Git	lists	the	tip	commits	of	all
branches	involved	in	the	merge	as	the	parents	of	the	new	commit.	This	is	in	fact
the	definition	of	a	“merge	commit”:	a	commit	having	more	than	one	parent.	This
information,	recorded	as	part	of	the	commit	graph,	allows	visualization	tools	to
detect	and	display	merges	in	a	helpful	and	unambiguous	way.	It	also	lets	Git	find
an	appropriate	base	version	for	comparison	in	later	merging	of	the	same	or
related	branches	when	they	have	diverged	again,	avoiding	the	duplication
mentioned	earlier;	this	is	called	the	“merge	base.”

Push	and	Pull
You	use	the	commands	git pull	and	git push	to	update	the	state	of	one
repository	from	that	of	another.	Usually,	one	of	these	repositories	was	cloned
from	the	other;	in	this	context,	git pull	updates	my	clone	with	recent	work
added	to	the	original	repository,	whereas	git push	contributes	my	work	in	the
other	direction.

There	is	sometimes	confusion	over	the	relationship	between	a	repository	and	the
one	from	which	it	was	cloned.	We’re	told	that	all	repositories	are	equal,	yet	there
seems	to	be	an	asymmetry	in	the	original/clone	relationship.	Pulling
automatically	updates	this	repository	from	the	original,	so	how	interconnected
are	they?	Will	the	clone	still	be	usable	if	the	original	goes	away?	Are	there
branches	in	my	repository	that	are	somehow	pointers	to	content	in	another
repository?	If	so,	that	doesn’t	sound	as	if	they’re	truly	independent.

Fortunately,	as	with	most	things	in	Git,	the	situation	is	actually	very	simple;	we
just	need	to	precisely	define	the	terms	at	hand.	The	central	thing	to	remember	is

that	with	regard	to	content,	a	repository	consists	of	two	things:	an	object	store
and	a	set	of	refs—that	is,	a	commit	graph	and	a	set	of	branch	names	and	tags	that
call	out	those	commits	that	are	of	interest.	When	you	clone	a	repository,	such	as
with	git clone server:dir/repo,	here’s	what	Git	does:
1.	 Creates	a	new	repository.

2.	 Adds	a	remote	named	“origin”	to	refer	to	the	repository	being	cloned	in
.git/config:

[remote "origin"]

 fetch = +refs/heads/*:refs/remotes/origin/*

 url = server:dir/repo

The	fetch	value	here,	called	a	refspec,	specifies	a	correspondence	between
sets	of	refs	in	the	two	repositories:	the	pattern	on	the	left	side	of	the	colon
names	refs	in	the	remote,	and	the	spec	indicates	with	the	pattern	on	the
right	side	where	the	corresponding	refs	should	appear	in	the	local
repository.	In	this	case,	it	means:	“Keep	copies	of	the	branch	refs	of	the
remote	origin	in	its	local	namespace	in	this	repository,
refs/remotes/origin/.”

3.	 Runs	git fetch origin,	which	updates	our	local	refs	for	the	remote’s
branches	(creating	them	in	this	case),	and	asks	the	remote	to	send	any
objects	we	need	to	complete	the	history	for	those	refs	(in	the	case	of	this
new	repository,	all	of	them).

4.	 Finally,	Git	checks	out	the	remote’s	current	branch	(its	HEAD	ref),	leaving
you	with	a	working	tree	to	look	at.	You	can	select	a	different	initial	branch
to	check	out	with	--branch,	or	suppress	the	checkout	entirely	with	-n.

Suppose	we	know	the	other	repository	has	two	branches,	master	and	beta.
Having	cloned	it,	we	see:

$ git branch

* master

Very	well,	we’re	on	the	master	branch,	but	where’s	the	beta	branch?	It	appears	to

be	missing	until	we	use	the	--all	switch:

$ git branch --all

* master

 remotes/origin/HEAD -> origin/master

 remotes/origin/master

 remotes/origin/beta

Aha!	There	it	is.	This	makes	some	sense:	we	have	copies	of	the	refs	for	both
branches	in	the	origin	repository,	just	where	the	origin	refspec	says	they	should
be,	and	there	is	also	the	HEAD	ref	from	the	origin,	which	told	Git	the	default
branch	to	check	out.	The	curious	thing	now	is:	what	is	this	duplicate	master
branch,	outside	of	origin,	that	is	the	one	we’re	actually	on?	And	why	did	we
have	to	give	an	extra	option	to	see	all	these	in	the	first	place?

The	answer	lies	in	the	purpose	of	the	origin	refs:	they’re	called	remote-tracking
refs,	and	they	are	markers	showing	us	the	current	state	of	those	branches	on	the
remote	(as	of	the	last	time	we	checked	in	with	the	remote	via	fetch	or	pull).	In
adding	to	the	master	branch,	you	don’t	want	to	actually	directly	update	your
tracking	branch	with	a	commit	of	your	own;	then	it	would	no	longer	reflect	the
remote	repository	state	(and	on	your	next	pull,	it	would	just	discard	your
additions	by	resetting	the	tracking	branch	to	match	the	remote).	So,	Git	created	a
new	branch	with	the	same	name	in	your	local	namespace,	starting	at	the	same
commit	as	the	remote	branch:

$ git show-ref --abbrev master

d2e46a81 refs/heads/master

d2e46a81 refs/remotes/origin/master

The	abbreviated	SHA-1	values	on	the	left	are	the	commit	IDs;	note	that	they	are
the	same,	and	recall	that	refs/heads/	is	the	implicit	namespace	for	local
branches.	Now,	as	you	add	to	your	master	branch,	it	will	diverge	from	the
remote	master,	which	reflects	the	actual	state	of	affairs.

The	final	piece	here	is	the	behavior	of	your	local	master	branch	in	regard	to	the
remote.	Your	intention	is	presumably	to	share	your	work	with	others	as	an
update	to	their	master	branches;	also,	you’d	like	to	keep	abreast	of	changes	made
to	this	branch	in	the	remote	while	you’re	working.	To	that	end,	Git	has	added
some	configuration	for	this	branch	in	.git/config:

[branch "master"]

 remote = origin

 merge = refs/heads/master

This	means	that	when	you	use	git pull	while	on	this	branch,	Git	will
automatically	attempt	to	merge	in	any	changes	made	to	the	corresponding
remote	branch	since	the	last	pull.	This	configuration	affects	the	behavior	of	other
commands	as	well,	including	fetch,	push,	and	rebase.

Finally,	Git	has	a	special	convenience	for	git checkout	if	you	try	to	check	out
a	branch	that	doesn’t	exist,	but	a	corresponding	branch	does	exist	as	part	of	a
remote.	It	will	automatically	set	up	a	local	branch	by	the	same	name	with	the
upstream	configuration	just	demonstrated.	For	example:

$ git checkout beta

Branch beta set up to track remote branch beta from

origin. Switched to a new branch 'beta'

$ git branch --all

* beta

 master

 remotes/origin/HEAD -> origin/master

 remotes/origin/beta

 remotes/origin/master

Having	explained	remote-tracking	branches,	we	can	now	say	succinctly	what	the
push	and	pull	operations	do:

git pull

Runs	git fetch	on	the	remote	for	the	current	branch,	updating	the	remote’s
local	tracking	refs	and	obtaining	any	new	objects	needed	to	complete	the
history	of	those	refs:	that	is,	all	commits,	tags,	trees,	and	blobs	reachable
from	the	new	branch	tips.	Then	it	tries	to	update	the	current	local	branch	to
match	the	corresponding	branch	in	the	remote.	If	only	one	side	has	added
content	to	the	branch,	then	this	will	succeed,	and	is	called	a	fast-forward
update	since	one	ref	is	simply	moved	forward	along	the	branch	to	catch	up
with	the	other.

If	both	sides	have	committed	to	the	branch,	however,	then	Git	has	to	do
something	to	incorporate	both	versions	of	the	branch	history	into	one	shared

version.	By	default,	this	is	a	merge:	Git	merges	the	remote	branch	into	the
local	one,	producing	a	new	commit	that	refers	to	both	sides	of	the	history	via
its	parent	pointers.	Another	possibility	is	to	rebase	instead,	which	attempts	to
rewrite	your	divergent	commits	as	new	ones	at	the	tip	of	the	updated	remote
branch	(see	Pull	with	Rebase).

git push
Attempts	to	update	the	corresponding	branch	in	the	remote	with	your	local
state,	sending	any	objects	the	remote	needs	to	complete	the	new	history.	This
will	fail	if	the	update	would	be	non–fast-forward	as	described	earlier	(i.e.,
would	cause	the	remote	to	discard	history),	and	Git	will	suggest	that	you	first
pull	in	order	to	resolve	the	discrepancies	and	produce	an	acceptable	update.

Notes
1.	 It	should	be	clear	from	this	description	that	nothing	about	the	remote-

tracking	branches	ties	the	operation	of	your	repository	to	the	remote.	Each
is	just	a	branch	in	your	repository	like	any	other	branch,	a	ref	pointing	to	a
particular	commit.	They	are	only	“remote”	in	their	intention:	they	track	the
state	of	corresponding	branches	in	the	remote,	and	they	are	periodically
updated	via	git pull.

2.	 It	can	be	momentarily	confusing	if	you	clone	a	repository,	use	git log	on
a	branch	you	know	is	in	the	remote,	and	it	fails—because	you	don’t	have	a
local	branch	by	that	name	(yet);	it’s	only	in	the	remote.	You	don’t	have	to
check	it	out	and	set	up	a	local	branch	just	to	examine	it,	though;	you	can
specify	the	remote-tracking	branch	by	name:	git log origin/foo.

3.	 A	repository	can	have	any	number	of	remotes,	set	up	at	any	time;	see	git-
remote(1).	If	the	original	repository	you	cloned	from	is	no	longer	valid,
you	can	fix	the	URL	by	editing	.git/config	or	with	git remote set-url,
or	remove	it	entirely	with	git remote rm	(which	will	remove	the
corresponding	remote-tracking	branches	as	well).

Chapter	2.	Getting	Started

In	this	chapter,	you’ll	get	started	working	with	Git	by	setting	your	defaults	and
preferences,	and	learn	the	basics	of	creating	a	repository	and	adding	initial
content	to	it.

Basic	Configuration
Before	starting	in	with	Git,	you’ll	want	to	set	a	few	basic	parameters	using	git
config.	This	command	reads	and	changes	Git	configuration	at	the	repository,
personal,	or	system	level.	Your	personal	Git	configuration	is	in	~/.gitconfig;	this
is	a	plain-text	file,	which	you	can	edit	directly	as	well,	if	you	like.	Its	format	is
called	INI	style	(after	a	file	extension	commonly	used	for	it,	though	not	by	Git),
and	is	divided	into	sections,	like	so:

[user]

 name = Richard E. Silverman

[color]

 ui = auto # overall default for color usage

[mergetool "ediff"]

 trustExitCode = true

Comments	are	introduced	with	a	hash	sign	(#)	as	shown,	as	is	common	in	Unix
configuration	files.	The	parameters	have	full	names	qualified	by	the	section	in
which	they	appear	using	a	dot;	for	example,	the	parameters	mentioned	in	this
example	are:

user.name

color.ui

mergetool.ediff.trustExitCode

You	use	these	names	when	reading	or	setting	parameters	with	git config,
rather	than	editing	the	file	yourself.	To	set	a	parameter	with	git config:

$ git config --{local,global,system} parameter value

If	you	give	this	command	when	your	current	directory	is	inside	a	Git	repository,
it	implies	--local,	and	it	will	change	the	configuration	for	that	repository	only,
in	the	file	.git/config.	Otherwise,	the	default	is	--global,	which	applies	to	your
overall	personal	Git	configuration	in	~/.gitconfig.	The	--system	option	changes
the	system-wide	configuration	on	the	machine	you’re	logged	into,	which	applies
to	all	users;	its	location	may	vary,	but	is	usually	/etc/gitconfig.	This	file	is	usually
writable	only	by	a	system	administrator,	so	you’d	need	to	be	root	to	run	this
command	to	make	a	change.	It’s	not	common	to	do	that	anyway;	usually	this	file
would	be	maintained	separately,	perhaps	using	a	configuration	management
system	such	as	Puppet	or	Chef.

Git	reads	these	three	configurations,	each	if	available,	in	the	order	system,
global,	then	local.	Settings	made	in	a	later	configuration	override	those	from	an
earlier	one	so	that,	for	example,	you	can	set	your	normal	email	address	with	--
global	but	change	it	for	commits	made	in	a	specific	repository	if	you	use	a
different	address	when	corresponding	about	that	work.

Parameters	that	take	Boolean	(yes/no)	values	can	be	given	as	yes/no,
true/false,	or	on/off.

See	git-config(1)	for	more	detail	on	the	format	of	the	configuration	files,	its
many	parameters	(some	mentioned	in	this	text	and	some	not),	and	other	uses	of
git config,	such	as	querying	the	current	setting	of	a	parameter.

Personal	Identification
Git	will	guess	your	name	and	email	address	from	the	environment,	but	those
may	vary	from	one	computer	to	another	and	may	not	be	what	you	want.	To	set
them:

$ git config --global user.name "Richard E. Silverman"

$ git config --global user.email res@oreilly.com

https://puppetlabs.com/
http://www.opscode.com/chef/

If	you	use	the	same	~/.gitconfig	in	multiple	contexts,	say	at	home	and	at	work,
then	this	may	be	inconvenient.	Git	will	take	your	email	address	from	the	EMAIL
environment	variable	before	resorting	to	a	guess,	so	you	can	leave	it	out	of	your
Git	configuration	and	set	EMAIL	appropriately	in	the	different	contexts,	usually
with	your	shell	startup	files,	such	as	.bashrc,	.profile,	.cshrc,	and	so	on.	There	are
other	environment	variables	for	finer	control	as	well,	such	as	GIT_AUTHOR_NAME
and	GIT_COMMITTER_EMAIL;	these	refer	to	the	fact	that	Git	maintains	a
distinction	between	the	author	of	a	change	and	the	person	who	committed	it.	See
git-commit-tree(1)	for	details,	as	well	as	Defining	Your	Own	Formats.

Text	Editor
When	you	use	git commit,	you	supply	some	free-form	text,	which	is	included
in	the	commit;	this	is	the	“commit	message.”	You	can	give	this	on	the	command
line	with	the	-m	switch,	but	you	can	also	use	your	favorite	text	editor	to	compose
the	message	instead.	If	you	omit	the	-m	switch,	Git	starts	a	text	editor	to	let	you
write	your	message.	The	default	editor	varies	by	platform;	on	Unix,	it	is	the
ubiquitous	vi.	You	can	customize	this	with	the	environment	variables
GIT_EDITOR,	EDITOR,	or	VISUAL	(the	latter	two	are	respected	by	many	other
Unix	programs	as	well),	or	by	setting	core.editor.	For	example	(reflecting	the
author’s	predilections):

$ git config --global core.editor emacs

Git	uses	the	first	of	these	variables	it	finds	in	the	order	given.

Commit	ID	Abbreviation
When	referring	directly	to	an	object	identifier,	it	is	usually	not	necessary	to	quote
the	entire	40-character	hexadecimal	SHA-1	value;	any	initial	substring	unique	to
the	current	context	will	do.	You	can	tell	Git	to	abbreviate	commit	IDs	generally
with:

$ git config --global log.abbrevCommit yes

$ git config --global core.abbrev 8

This	improves	readability	in	various	places,	especially	in	log	output	such	as:

$ git log --pretty=oneline

222433ee Update draft release notes to 1.7.10

2fa91bd3 Merge branch 'maint'

70eb1307 Documentation: do not assume that n -> 1 in …

...

where	the	commit	messages	would	otherwise	be	pushed	halfway	off	the	screen
to	the	right	by	the	full	identifiers.	core.abbrev	is	the	length	of	the	shortened
identifiers	in	digits;	the	default	is	7	in	most	cases.	To	see	the	full	identifiers	as	a
per-command	exception,	use	--no-abbrev-commit.	Note	that	when	you’re
quoting	commit	IDs	in	a	public	or	“for	the	record”	context,	it	may	be	best	to	use
the	full	ID,	to	avoid	any	future	ambiguities.

Pagination
Git	will	automatically	pipe	output	from	many	commands	such	as	git log	and
git status	to	less(1)	for	pagination;	you	can	select	a	different	program	with
the	core.pager	variable	(or	the	environment	variable	GIT_PAGER),	and	disable
pagination	entirely	by	setting	this	to	be	simply	cat	(or	something	equivalently
transparent).	You	can	control	pagination	on	a	per-command	basis	by	setting	a
Boolean	pager.command,	e.g.,	pager.status	for	git status	(this	can	also	be
the	name	of	the	pager	program	to	use	for	this	specific	command).	You	may	also
want	to	read	the	git-config(1)	section	on	core.pager,	which	discusses	specific
things	Git	does	with	the	LESS	environment	variable	to	affect	the	behavior	of
less(1).

Color
Many	Git	commands,	including	diff,	log,	and	branch,	can	use	color	to	help
you	interpret	their	output,	but	these	options	are	mostly	off	by	default.	To	enable
the	use	of	color	generally,	set:

$ git config --global color.ui auto

(ui	stands	for	“user	interface.”)	This	will	turn	on	most	color	options	when	Git	is

talking	to	a	terminal	(tty/pty	device).	You	can	then	turn	off	color	for	individual
commands	if	you	prefer;	for	example,	to	disable	it	for	git branch	(but	leave	it
on	for	other	functions):

$ git config --global color.branch no

Git’s	use	of	color	is	very	configurable,	down	to	defining	new	color	names,
specifying	terminal	control	sequences,	and	using	color	in	custom	log	formats.
See	git-config(1)	and	git-log(1)	for	details.

Cryptographic	Keys
Git	can	use	GnuPG	(“gpg”)	to	cryptographically	sign	tags	and	commits	in	order
to	verify	the	authenticity	of	sensitive	assertions	such	as,	“This	tagged	commit
contains	the	version	3.0	source	code.”	See	git	tag	for	more	on	signing	tags.	By
default,	Git	passes	your	name	and	email	address	to	GnuPG	to	select	the	signing
key.	If	the	combination	of	your	Git	and	GnuPG	settings	doesn’t	select	the	correct
key,	you	can	set	it	explicitly	with:

$ git config --global user.signingkey 6B4FB2D0

You	can	use	any	key	identifier	GnuPG	supports;	6B4FB2D0	happens	to	be	an	ID
for	the	author’s	personal	key.	You	can	also	use	one	of	the	email	addresses	bound
to	the	key	you	want,	if	it’s	unique	among	your	keys.

Command	Aliases
Most	systems	provide	a	way	to	abbreviate	long	commands	with	user-defined
command	aliases;	for	instance,	using	alias	in	your	Unix	bash	shell	startup	file
~/.bashrc.	Git	has	its	own	internal	alias	system	as	well,	which	may	be	more
convenient.	This	command:

$ git config --global alias.cp cherry-pick

defines	git cp	as	an	alias	for	git cherry-pick.	An	exclamation	point	means
to	pass	the	alias	definition	to	the	shell,	letting	you	use	more	complex	aliases;	for
example,	this	definition	in	~/.gitconfig:

http://www.gnupg.org/

[alias]

 setup = ! "git init; git add .; git commit"

defines	an	alias	git setup,	which	sets	up	a	new	repository	using	the	contents	of
the	current	directory.

More	generally,	whenever	you	type	git something,	if	something	is	not	a	built-
in	command	or	defined	alias,	Git	searches	its	installation	path	(often	/usr/lib/git-
core)	and	then	your	own	search	path	for	a	program	named	git-something.	So,
you	can	make	your	own	Git	command	git foo	just	by	placing	a	program	in	an
executable	file	named	git-foo	somewhere	on	your	personal	path	(usually,	the
value	of	the	PATH	environment	variable).

Getting	Help
You	can	get	help	with	a	Git	command	or	feature	using	Git	itself,	for	example:

$ git help commit

This	displays	the	documentation	for	the	command	git commit.	On	Unix
systems,	this	documentation	is	available	via	the	usual	man	page	system	as	well;
this	is	equivalent:

$ man git-commit

References
git-init(1)

git-commit-tree(1)

git-config(1)

git-log(1)	[“Pretty	Formats”]

Creating	a	New,	Empty	Repository
The	command:

$ git init directory

creates	the	argument	directory	if	needed,	and	a	directory	named	.git	inside	it
holding	a	new,	empty	Git	repository.	Aside	from	the	repository	itself	in	.git,	that
directory	will	hold	the	working	tree:	copies	of	the	files	and	directories	under
version	control	that	you	will	edit.	The	.git	directory	holds	the	files	and	data
structures	that	form	the	repository	itself,	including	the	database	of	all	historical
revisions	of	all	project	files.	Unlike	CVS	and	(until	recently)	Subversion,	there	is
no	control	directory	in	each	directory	of	the	working	tree	(CVS	and	.svn);	there	is
just	the	one	.git	directory	at	the	top	of	the	project	tree.

The	default	with	no	argument	is	the	current	directory;	that	is,	a	simple	git init
creates	a	new	.git	in	the	current	directory.

git init	is	a	safe	command.	It	will	not	remove	any	existing	files	in	the	target
directory,	the	usual	pattern	being	that	you	are	about	to	add	those	files	to	the	new
repository.	It	will	also	not	damage	an	existing	repository,	even	though	it	gives	a
somewhat	heart-stopping	message	about	“reinitializing”	if	you	do	it;	all	this
actually	does	is	make	some	administrative	updates,	such	as	picking	up	new
templates	for	“hook”	scripts	made	available	by	the	system	administrator	(see	Git
Hooks).

Selected	Options

--bare
Creates	a	“bare”	repository;	that	is,	one	without	an	associated	working	tree.
The	internal	repository	files	that	would	otherwise	be	inside	.git	are	instead
created	in	the	target	directory	itself,	and	certain	repository	options	are	set
differently,	principally	core.bare = yes.	A	bare	repository	usually	serves
as	a	point	of	coordination	for	a	centralized	workflow,	in	which	several	people
push	and	pull	from	that	repository	rather	than	directly	among	themselves;	no
one	works	with	the	bare	copy	directly.

--shared

Sets	group	ownership,	file	permissions,	and	options	to	support	multiple	Unix
accounts	pushing	into	a	non-bare	repository.	The	normal	expectation	is	that	if
someone	wants	to	send	you	an	update	to	a	project	you’re	both	working	on,

she	will	ask	you	to	pull	from	her	repository,	so	that	one	way	or	another	you
are	the	only	person	who	ever	actually	modifies	your	repository.	The	usual
file	permissions	reflect	this,	allowing	only	you	to	modify	the	repository	files.
The	--shared	option	arranges	permissions	to	allow	others	in	a	common
Unix	group	to	push	directly	into	your	repository,	as	well	as	pull	from	it.
There	are	several	settings	for	this	option,	manipulating	the	details	of	group
ownership,	file	permissions,	interactions	with	people’s	umask	settings,	and
so	on;	see	git-init(1)	for	details.

This	arrangement	isn’t	much	used,	though;	ordinarily	you	and	your	coworker
would	simply	pull	from	one	another’s	repositories	into	your	own,	or	push	to
a	shared	bare	repository.	Pushing	into	a	nonbare	repository	is	awkward,
because	it	will	fail	if	you	try	to	push	the	branch	that	is	currently	checked	out
in	the	remote	(since	that	could	invalidate	the	remote’s	working	tree	and	index
at	any	moment).	A	bare	repository	doesn’t	have	a	working	tree	or	index
(since	no	one	is	using	it	directly),	and	so	does	not	have	this	limitation.

THE	.GIT	DIRECTORY

Though	the	repository	is	usually	stored	in	a	directory	named	.git	at	the	top	of	the	working	tree,
there	are	ways	to	locate	it	elsewhere:	you	can	use	git --git-dir directory	to	refer
explicitly	to	another	loction,	or	set	the	environment	variable	GIT_DIR.	For	simplicity	and	to
match	the	common	case,	we	will	generally	just	refer	to	.git	when	talking	about	the	repository
directory.

Importing	an	Existing	Project
These	commands	create	a	new	repository	and	add	all	content	in	the	current
directory	to	it:

$ git init

$ git add .

$ git commit -m 'Begin Project Foo!'

To	illustrate:

$ cd hello

$ ls -l

total 12

-rw-r----- 1 res res 50 Mar 4 19:54 README

-rw-r----- 1 res res 127 Mar 4 19:53 hello.c

-rw-r----- 1 res res 27 Mar 4 19:53 hello.h

$ git init

Initialized empty Git repository in /u/res/hello/.git/

$ git add .

$ git commit -m 'Begin Project Foo!'

[master (root-commit) cb9c236f] Begin Project Foo!

3 files changed, 13 insertions(+)

create mode 100644 README

create mode 100644 hello.c

create mode 100644 hello.h

This	creates	a	new	Git	repository	.git	in	the	current	directory,	and	adds	the
contents	of	the	entire	directory	tree	rooted	there	to	the	repository	as	the	initial
commit	on	a	new	branch	named	master:

$ git branch

* master

$ git log --stat

commit cb9c236f

Author: Richard E. Silverman <res@oreilly.com>

Date: Sun Mar 4 19:57:45 2012 -0500

Begin Project Foo!

README | 3 +++

hello.c | 7 +++++++

hello.h | 3 +++

3 files changed, 13 insertions(+)

In	more	detail:	git add .	adds	the	current	directory	to	the	(initially	empty)
index;	this	includes	files	as	well	as	directories	and	their	contents,	and	so	on,
recursively.	git commit	then	creates	a	new	tree	object	capturing	the	current
state	of	the	index,	as	well	as	a	commit	object	with	your	comment	text,	personal
identification,	the	current	time,	and	so	on,	pointing	to	that	tree.	It	records	these	in
the	object	database,	and	then	finally	sets	the	master	branch	to	the	new	commit;
that	is,	makes	the	ref	refs/heads/master	point	to	the	new	commit	ID:

$ git log --pretty=oneline

cb9c236f Begin Project Foo!

$ git show-ref master

cb9c236f refs/heads/master

git log	shows	the	ID	of	the	most	recent	(and	right	now	only)	commit,	and	git
show-ref master	shows	the	commit	ID	currently	referred	to	by	the	branch
master;	you	can	see	that	they	are	the	same.

Ignoring	Files
While	you’re	working	on	a	project,	you	may	have	files	in	your	working	directory
that	you	want	Git	to	simply	ignore.	If	it’s	a	small	project	in	an	interpreted
language,	this	may	not	happen	so	much,	but	it’s	definitely	an	issue	for	projects
that	produce	compiled	code	of	any	sort,	or	use	tools	like	autoconf,	or	generate
documentation	automatically	in	various	formats.	Such	files	include:

object	code
*.o,	*.so,	*.a,	*.dll,	*.exe

bytecode
*.jar	(Java),	*.elc	(Emacs	Lisp),	*.pyc	(Python)

toolchain	artifacts
config.log,	config.status,	aclocal.m4,	Makefile.in,	config.h

Generally	speaking,	anything	that	is	automatically	generated	you	probably	don’t
want	tracked	by	Git,	and	you	don’t	want	Git	constantly	including	them	in	listings
or	complaining	about	them	either.	Git	looks	at	three	different	kinds	of	files	to
determine	what	to	ignore,	in	order:
1.	 Files	named	.gitignore	in	your	working	tree.	This	is	just	another	file	to	Git

as	far	as	content	is	concerned—it	will	list	it	as	“untracked”	if	it’s	present
but	not	in	the	repository—and	so	you	normally	add	it	to	the	repository
content;	thus,	if	this	is	shared	work,	you	should	only	put	things	there	that
make	sense	for	other	people	to	ignore	as	well.	You	can	actually	put
.gitignore	in	a	.gitignore	file,	and	cause	it	to	ignore	itself.	All	.gitignore
files	in	the	current	and	containing	directories	in	the	repository	are	read,
with	rules	in	files	closer	to	the	current	directory	overriding	those	in	files
farther	away.

2.	 The	per-repository	file	.git/info/exclude.	This	is	part	of	your	repository
configuration,	but	not	part	of	the	repository	content,	so	unlike	a	tracked

.gitignore	file,	it	is	not	automatically	foisted	upon	people	who	clone	your
project.	This	is	a	good	place	to	put	things	you	find	convenient	to	ignore	for
this	project,	but	about	which	others	might	disagree	(or	if	you	simply	decide
not	to	use	.gitignore	files	as	a	matter	of	policy,	to	avoid	confusion).

3.	 A	file	named	by	the	configuration	variable	core.excludesfile,	if	you	set
it.	You	might	do	this:

$ git config --global core.excludesfile ~/.gitignore

and	keep	a	set	of	ignore	patterns	there	that	you	want	Git	to	always	observe.
That’s	assuming	your	home	directory	is	not	itself	inside	a	Git	repository,	of
course,	in	which	case	you	might	want	to	name	the	file	something	else	(and	ask
yourself	if	you	don’t	perhaps	like	Git	just	a	bit	too	much).

Syntax	of	“Ignore	Patterns”
See	gitignore(5)	for	precise	details;	generally	speaking,	an	ignore	file	uses	shell
“glob”	patterns	and	comments	in	the	following	fashion.	Note	the	use	of	the
exclamation	point	to	introduce	a	negated	pattern,	overriding	subcases	of	an
earlier	pattern.	Git	reads	all	patterns	in	a	file	to	determine	the	disposition	of	a
given	path,	rather	than	stopping	at	the	first	match,	and	the	last	matching	line	is
the	one	that	applies:

Ignore this specific file in a subdirectory.

conf/config.h

Ignore this specific file in the current directory.

(not “./”)

/super-cool-program

Patterns without slashes apply everywhere in this

directory and below.

Ignore individual objects and object archives

(*.o and *.a).

*.[oa]

Ignore shared objects...

*.so

... but don't ignore this file, or my boyfriend

will complain.

!my.so

Ignore any directories named “temp,” but still

notice regular files and symbolic links with

that name.

temp/

In	.git/info/exclude	or	your	core.excludesfile,	the	“current	directory”	indicated
earlier	is	the	top	of	the	working	tree.

Note	that	all	this	applies	only	to	untracked	files;	you	cannot	tell	Git	to	ignore
changes	to	a	tracked	file	this	way.	The	command	git update-index --
assume-unchanged	is	useful	for	that.

NOTE

Shell	“globs”	are	simple	patterns,	not	as	powerful	as	regular	expressions;	Git	uses	them	to
indicate	sets	of	files	and	refs.	There	are	many	slightly	different	versions	of	the	glob	syntax,	as
it	has	been	around	for	a	long	time;	the	one	used	in	Git	is	documented	in	the	fnmatch(3)	and
glob(3)	man	pages.	Simply	put:	*	matches	a	sequence	of	characters	not	containing	/;	?
matches	a	single	character	(again	not	/);	and	[abc]	matches	one	character,	which	must	be
either	a,	b,	or	c.

Chapter	3.	Making	Commits

This	chapter	explains	how	to	make	changes	to	your	repository	content:	add,	edit,
and	remove	files;	manipulate	the	index;	and	commit	changes.

Changing	the	Index
When	you	run	git commit,	without	arguments	or	options,	Git	adds	the	contents
of	the	index	as	a	new	commit	on	the	current	branch.	So	before	committing,	you
add	to	the	index	those	changes	you	want	to	commit.	This	can	skip	some	changes
you’ve	made	to	your	working	files,	if	you’re	not	ready	to	commit	those	yet.

GIT	COMMIT	<FILENAME>

Giving	a	specific	filename	to	git commit	works	differently:	it	ignores	the	index,	and	commits
just	the	changes	to	that	file.

Adding	a	New	File

$ git add filename

This	is	suitably	mnemonic,	but	note	the	next	command.

Adding	the	Changes	to	an	Existing	File

$ git add filename

Yes,	this	is	the	same	command.	In	both	cases,	Git	adds	the	current	working	file
contents	to	the	object	database	as	a	new	blob-type	object	(assuming	it’s	not
already	there),	and	notes	the	change	in	the	index.	If	the	file	is	new,	then	this	will
be	a	new	index	entry;	if	not,	just	an	updated	one	pointing	to	the	new	object	(or

with	changed	attributes,	such	as	permissions)—but	it’s	essentially	the	same
operation	to	Git.	A	file	is	“new”	if	its	pathname	is	not	in	the	index,	usually
meaning	it	was	not	part	of	the	last	commit;	this	is	what	causes	git status	to
note	a	file	as	“untracked”	prior	to	your	adding	it	(files	in	the	index	are	called
“tracked,”	and	they	are	the	ones	Git	cares	about,	generally	speaking).

The	filename	can	be	a	directory,	in	which	case	Git	adds	all	new	files	and
changes	to	tracked	files	under	that	directory.

Adding	Partial	Changes

$ git add -p

You	can	also	add	only	some	of	the	changes	you’ve	made	to	a	file,	using	git add
--patch (-p).	This	starts	an	interactive	loop	in	which	you	can	select	portions
of	the	changes	you’ve	made	and	skip	others.	When	you’re	done,	Git	adds	to	the
index	versions	of	the	relevant	files	with	only	those	changes	applied	to	them.	git
status	reports	this	situation	by	listing	the	same	file	under	both	“changes	not
staged	for	commit”	and	“changes	to	be	committed,”	since	the	file	now	has	a	mix
of	both.

This	is	an	important	feature,	since	it	helps	you	to	make	well-factored	commits.
When	you’re	done	with	some	editing	and	ready	to	commit,	you	may	realize	that
you’ve	made	changes	that	ought	to	be	represented	by	more	than	one	commit;
perhaps	you’ve	fixed	two	bugs	in	the	same	file,	or	tidied	up	some	unrelated
comments	while	you	were	at	it.	git add -p	allows	you	to	conveniently	split	the
work	up	into	separate	commits.

The	interactive	loop	has	a	number	of	options	with	integrated	help	(use	“?”),	but
note	particularly	the	s	command	to	split	a	set	of	changes,	called	a	“hunk,”	into
smaller	changes	(if	Git’s	initial	analysis	glues	together	pieces	you	want
separated),	and	the	e	command,	which	allows	you	to	edit	hunks	yourself.	If	you
set	the	interactive.singlekey	Git	configuration	variable,	you	can	use	single
keystrokes	for	these	commands	and	skip	typing	return	after	each.

Just	running	git add -p	with	no	arguments	will	let	you	examine	all	files	with
unstaged	changes	(unlike	just	git add,	which	requires	an	argument	or	option	to

tell	it	what	to	add).	You	can	also	specify	particular	files	to	consider	as
arguments.

git add -p	is	actually	a	special	case	of	git add --interactive (-i).	The
latter	starts	at	a	higher	level,	allowing	you	to	view	status,	add	untracked	files,
revert	to	the	HEAD	version,	select	files	to	patch,	etc.;	git add -p	just	jumps
straight	to	the	“patch”	subcommand	of	git add -i.

Shortcuts

git add -u
Include	all	files	in	the	current	index;	this	includes	changed	and	deleted	files,
but	not	new	ones.

git add -A
Include	all	filenames	in	the	index	and	in	the	working	tree;	this	stages	new
files	as	well.	This	is	useful	if	you	are	importing	a	new	version	of	code	from
another	source	not	in	Git,	traditionally	called	a	“vendor	branch.”	You	would
replace	your	working	tree	with	the	unpacked	new	code,	then	use	git add -A
to	stage	all	changes,	additions,	and	deletions	necessary	to	commit	the	new
version.	Add	-f	to	include	normally	ignored	files.

Removing	a	File

$ git rm filename

This	does	two	things:
1.	 Deletes	the	file’s	entry	from	the	index,	scheduling	it	for	removal	in	the	next

commit

2.	 Deletes	the	working	file	as	well,	as	with	rm filename

If	you	happen	to	delete	the	working	file	yourself	first,	that’s	no	problem;	Git
won’t	care.	Removing	it	from	the	index	is	what	matters;	deleting	the	working
copy	afterward	is	just	being	tidy.	In	both	cases,	git status	will	show	the	file	as
deleted;	the	difference	will	be	whether	it	is	listed	under	“changes	not	staged	for

commit”	(if	you	just	deleted	the	working	file),	or	“changes	to	be	committed”	(if
you	used	git rm).

git rm	on	a	file	not	yet	under	version	control	won’t	work,	though;	just	use	rm.

Renaming	a	File
Renaming	a	file	or	moving	a	directory	in	Git	is	simple,	using	the	git mv
command:

$ git mv foo bar

This	is	actually	just	a	shortcut	for	renaming	the	working	file	outside	Git,	then
using	git add	on	the	new	name:

$ mv foo bar

$ git add bar

Renaming	is	a	thorny	topic	in	version	control	generally.	Renaming	a	file	is	in	a
sense	equivalent	to	deleting	that	file	and	creating	a	new	one	with	a	different
name	and	the	same	contents—but	that	might	also	occur	without	your	meaning	to
rename	anything,	if	the	new	file	just	happens	to	coincide	with	the	old	one.	The
distinction	is	one	of	intent,	and	so	must	be	represented	separately	by	the	system
if	it	is	to	be	captured	at	all.	And	it	can	be	quite	important	to	do	so,	because
people	generally	want	the	history	of	a	renamed	file	to	be	preserved;	by	even
calling	what	we’ve	done	“renaming,”	we	are	implicitly	saying	that	this	is	really
“the	same	file,	just	with	a	different	name.”	We	don’t	want	to	lose	the	history	just
because	we	changed	the	name.	Which	begs	the	question:	just	what	is	a	“file,”
anyway?	Is	it	just	the	content?	No,	because	we	track	changes	to	content	to	the
same	file	over	time.	Is	it	just	the	name?	No,	because	sometimes	we	want	to
“rename”	the	file,	which	considers	the	content	to	be	primary	and	the	name
secondary.	The	truth	is	that	there	is	no	single	answer	to	this	question,	since	it
depends	on	the	user’s	wishes	in	a	particular	situation—and	so	it	is	hard	to	design
a	single	system	to	accommodate	it,	and	systems	vary	in	how	they	do	so.	CVS
does	not	handle	renaming	at	all.	Subversion	has	explicit	renaming:	it	represents	a
rename	operation	separately	from	a	delete/create	pair.	This	has	some	advantages,
but	also	engenders	considerable	complexity	in	the	system	to	support	it.

Git’s	approach	is	to	not	track	renaming	explicitly,	but	rather	to	infer	it	from
combinations	of	name	and	content	changes;	content-based	addressing	makes	this
particularly	easy	and	attractive	as	a	matter	of	implementation.	Git	doesn’t	have	a
“rename”	function	internally	at	all;	as	indicated,	git mv	is	just	a	shortcut.	If	you
run	git status	after	the	first	command	earlier,	you’ll	see	what	you’d	expect:
Git	shows	foo	as	deleted,	and	the	new	file	bar	as	untracked.	If	you	do	it	after	the
git add,	though,	you	see	just	one	annotation:	renamed: foo -> bar.	Git	sees
that	the	file	for	a	particular	index	entry	has	been	removed	from	disk,	while	a	new
entry	has	appeared	with	a	different	filename—but	the	same	object	ID,	and	hence
the	same	contents.	It	can	also	consider	renaming	relative	to	a	less	strict	notion	of
file	equivalence—that	is,	if	a	new	file	is	sufficiently	similar	to	one	that’s	been
deleted	rather	than	100%	identical	(see	the	options	for	renaming	and	copy
detection	in	Chapter	9).

This	approach	is	very	simple,	but	it	requires	that	you	sometimes	be	aware	of	the
mechanics.	For	example:	because	this	analysis	is	expensive,	it	is	turned	off	by
default	when	examining	history	with	git log;	you	have	to	remember	to	enable
it	with	-M	if	you	want	to	see	renaming.	Also,	if	you	edit	a	file	substantially	and
rename	it	in	a	single	commit,	it	may	not	show	up	as	a	rename	at	all;	you’re	better
off	editing,	committing,	then	doing	the	rename	in	a	separate	commit	to	make
sure	it	shows	up	as	such.

Unstaging	Changes
If	you	want	to	start	over	with	this	process,	it’s	easy:	just	use	git reset.	This
resets	the	index	to	match	the	current	commit,	undoing	any	changes	you’ve	made
with	git add.	git reset	reports	the	files	with	outstanding	changes	after	its
action:

$ git reset

Unstaged changes after reset:

M old-and-busted.c

M new-hotness.hs

You	can	also	give	specific	files	or	directories	to	reset,	leaving	staged	changes	in
other	files	alone.	With	git reset --patch	you	can	be	even	more	specific,
interactively	selecting	portions	of	your	staged	changes	to	unstage;	it	is	the

reverse	of	git add -p.	See	Discarding	Any	Number	of	Commits	for	other
options.

Making	a	Commit
When	you’ve	prepared	the	index	you	want,	use	git commit	to	store	it	as	a	new
commit.	Use	git status	first	to	check	the	files	involved,	and	git diff --
cached	to	check	the	actual	changes	you’re	applying.	git diff	alone	shows	any
remaining	unstaged	changes	(the	difference	between	your	working	tree	and	the
index);	adding	--cached	(or	the	synonym	--staged)	shows	the	difference
between	the	index	and	the	last	commit	instead	(i.e.,	the	changes	you’re	about	to
make	with	this	commit).

Commit	Messages
Each	commit	has	an	associated	“commit	message”:	some	free-form	text	used	to
describe	the	changes	introduced	by	that	commit.	You	can	give	the	message	on
the	command	line	as:

$ git commit -m "an interesting commit message"

If	you	don’t,	Git	will	start	a	text	editor	to	allow	you	to	enter	your	message;	Text
Editor	describes	how	the	editor	is	chosen.	Although	the	text	is	free-form,	the
usual	practice	is	to	make	the	first	line	no	longer	than	50–60	characters	or	so.	If
you	need	further	lines,	then	separate	them	from	the	first	one	with	a	blank	line,
and	wrap	the	remaining	paragraphs	to	72	characters.	The	first	line	should	serve
as	a	subject	line	for	the	commit,	as	with	an	email.	The	intention	is	to	allow
listings	that	include	the	commit	message	to	usefully	abbreviate	the	message	with
its	first	line,	still	leaving	space	for	some	other	information	on	the	line	(e.g.,	git
log --oneline).

It’s	actually	rather	important	to	follow	this	convention,	since	lots	of	Git-related
software	as	well	as	various	parts	of	Git	itself	assume	it.	The	subject	line	of	a
commit	is	addressable	as	a	separate	entity	when	writing	commit	formats	and
extracting	commit	information,	and	programs	that	display	commits	in	various
contexts	assume	that	the	subject	will	make	sense	on	its	own	and	not	be	too	long.

GitHub	and	gitweb	both	do	this	visually,	for	example,	displaying	the	subject	as	a
separate	item	in	bold	at	the	top,	with	the	rest	of	the	message	(the	“body”),	if	any,
set	in	smaller	text	below.	You’ll	get	odd-looking	results	that	are	difficult	to	read
if	the	first	line	is	just	a	sentence	fragment	and/or	too	long	to	fit	in	the	allotted
space.

Following	this	convention	can	also	help	you	make	better	commits:	if	you	find	it
difficult	to	summarize	the	changes,	consider	whether	they	might	better	be	split
into	separate	commits—which	brings	up	the	topic	of	the	next	section.

What	Makes	a	Good	Commit?
This	depends	on	how	you	intend	to	use	your	repository	and	Git	in	general;
there’s	no	single	right	answer	to	this	question.	Some	people	use	the	convention
(if	the	content	is	software)	that	every	commit	must	be	buildable,	which	means
that	commits	will	generally	be	larger	since	they	must	contain	everything	required
to	advance	the	code	from	one	coherent	stage	to	another.	Another	approach	is	to
structure	your	commits	primarily	to	take	advantage	of	Git’s	ability	to	transmit
and	reuse	them.	When	preparing	a	commit,	ask	yourself:	does	it	contain	entirely
and	only	the	changes	necessary	to	do	what	the	commit	message	says	it	does?	If
the	commit	says	it	implements	a	feature,	does	someone	using	git cherry-pick
to	try	out	the	feature	have	a	decent	chance	of	that	succeeding,	or	does	the
commit	also	contain	unrelated	changes	that	will	complicate	this?	Think	also
about	later	using	git revert	to	undo	a	change,	or	about	merging	this	branch
into	other	branches	to	incorporate	the	new	feature.	In	this	style,	each	commit
might	not	produce	functional	software,	since	it	could	make	sense	to	represent	a
large	overall	change	as	a	series	of	commits	in	order	to	better	reuse	its	parts.	You
can	use	other	methods	to	indicate	larger	project	checkpoints	like	buildable
intermediate	versions,	including	Git	tags	or	unique	strings	in	commit	messages,
which	you	can	find	using	git log --grep.

Be	careful	too	with	the	timing	of	your	commits,	as	well	as	with	their	content.	If
you	are	going	to	make	wide-ranging,	disruptive	changes	such	as	adjusting
whitespace,	renaming	functions	or	variables,	or	changing	indentation,	you
should	do	that	at	a	time	when	others	can	conveniently	take	your	changes	as
given,	since	automatic	merge	is	likely	to	fail	miserably	in	such	cases.	Doing
these	things	while	others	are	doing	lots	of	work	on	related	branches—say,	when

a	big	merge	is	coming	up—will	make	that	merge	a	nightmare.

There	are	other	issues	about	which	version	control	users	in	general	can	argue
endlessly:	for	example,	how	should	commit	messages	be	phrased
grammatically?	Some	like	the	imperative	mood	(“fix	a	bug”),	while	others	favor
the	past	tense	(“fixed	a	bug”).	It	is	common	in	the	Git	source	code	itself	to	refer
to	adding	a	feature	as	“teaching	Git”	to	do	something.	Obviously	there	is	no
strict	guideline	to	be	had	here,	though	consistency	at	least	makes	it	easier	to
search	for	specific	changes.

Shortcuts
git commit -a	adds	all	tracked,	modified	files	to	the	index	before	committing.
This	commits	changed	and	deleted	files,	but	not	new	ones;	it	is	equivalent	to	git
add -u	followed	by	git commit.	Be	careful,	though;	if	you	get	too	accustomed
to	using	this	command,	you	may	accidentally	commit	some	changes	you	didn’t
intend	to—though	that’s	easy	to	undo;	see	the	next	chapter.

Empty	Directories
Git	does	not	track	directories	as	separate	entities;	rather,	it	creates	directories	in
the	working	tree	as	needed	to	create	the	paths	to	files	it	checks	out,	and	removes
directories	if	there	are	no	longer	any	files	in	them.	This	implies	that	you	can’t
represent	an	empty	directory	directly	to	Git;	you	have	to	put	at	least	one
placeholder	file	within	the	directory	to	get	Git	to	create	it.

A	Commit	Workflow
Here’s	a	procedure	for	making	multiple	commits	from	a	single	set	of	edits	to
your	working	files,	while	making	sure	each	commit	is	good:

1.	 Use	git add	(with	various	options)	to	stage	a	subset	of	your	changes.

2.	 Run	git stash --keep-index.	This	saves	and	undoes	your	outstanding,
unstaged	changes	while	preserving	your	staged	changes	in	the	index,	and
resets	your	working	tree	to	match	the	index.

3.	 Examine	this	working	tree	state	to	make	sure	your	selection	of	changes

makes	sense;	build	and	test	your	software,	for	example.

4.	 Run	git commit.

5.	 Now,	use	git stash pop	to	restore	your	remaining	unstaged	changes,	and
go	back	to	step	1.	Continue	this	process	until	you’ve	committed	all	your
changes,	as	confirmed	by	git status	reporting	“nothing	to	commit,
working	directory	clean.”

See	git	stash	for	more	on	the	useful	git stash	command.

Chapter	4.	Undoing	and	Editing
Commits

In	Chapter	3,	we	discussed	staging	changes	in	the	index	for	inclusion	in	the	next
commit.	This	chapter	is	about	undoing	or	correcting	changes	once	you’ve
committed	them.

With	centralized	version	control,	committing	and	publishing	a	change	are	the
same	thing:	as	soon	as	you	commit	to	the	shared	repository,	others	can	see	and
start	using	your	changes.	This	makes	undoing	a	commit	problematic;	how	do
you	retract	a	commit	others	have	already	checked	out	or	merged?

With	Git,	however,	this	is	not	a	problem,	since	you	are	committing	to	your	own
private	repository.	You	are	free	to	delete	or	change	your	local	commits	as	you
please,	and	Git	gives	you	the	tools	to	do	that;	publishing	those	commits	is	a
separate	action,	via	pushing	to	shared	repository	or	asking	others	to	pull	from
yours.

Changing	already	published	commits	is	awkward,	of	course,	since	it	would
cause	others	to	lose	history	they	already	have;	Git	will	warn	people	pulling	from
you	of	that,	and	you	might	not	even	be	allowed	to	push	such	changes	to	a	shared
repository.	The	extra	step	afforded	by	Git	is	crucial,	though:	by	separating
committing	and	publishing,	it	allows	you	to	use	version	control	freely	for	your
own	purposes	as	you	work,	then	clean	up	your	commits	for	public	consumption
before	publishing	them.

Note	that	most	of	the	techniques	discussed	in	this	chapter	only	make	sense	when
the	portion	of	history	involved	is	linear;	that	is,	contains	no	merge	commits.	We
will	discuss	techniques	for	editing	a	branched	history	in	Chapter	10.

NOTE

Technically,	you	can’t	“change”	a	commit.	Because	of	content-based	addressing,	if	you	change
anything	about	a	commit,	it	becomes	a	different	commit,	since	it	now	has	a	different	object	ID.

So	when	we	speak	of	changing	a	commit,	we	really	mean	replacing	it	with	one	having
corrected	attributes	or	contents.	But	since	the	intention	is	to	change	the	history,	it’s	convenient
to	use	this	phrasing,	and	we’ll	do	so.

Changing	the	Last	Commit
The	most	common	correction	to	make	is	to	the	previous	commit:	you	run	git
commit,	and	then	realize	you	made	a	mistake—perhaps	you	forgot	to	include	a
new	file,	or	left	out	some	comments.	This	common	situation	is	also	the	easiest
one	to	address.	There’s	no	preparatory	step;	just	make	whatever	corrections	you
need,	adding	these	to	the	index	as	usual.	Then	use	this	command:

$ git commit --amend

Git	will	present	you	with	the	previous	commit	message	to	edit	if	you	like;	then,
it	simply	discards	the	previous	commit	and	puts	a	new	one	in	its	place,	with	your
corrections.	You	can	add	-C HEAD	if	you	want	to	reuse	the	previous	commit
message	as-is.

The	--amend	feature	is	a	good	example	of	how	Git’s	internal	organization	makes
many	operations	very	easy,	both	to	implement	and	to	understand.	The	tip	commit
on	the	current	branch	has	a	pointer	to	the	previous	commit,	its	parent;	that	is	all
that	links	it	to	the	rest	of	the	branch.	In	particular,	no	commits	point	to	this	one,
so	no	other	commits	are	affected	(recall	that	commits	point	to	their	parents,	but
not	to	their	children).	Thus,	discarding	the	tip	commit	consists	only	of	moving
the	branch	pointer	backward	to	the	previous	one;	nothing	else	need	be	done.
Eventually,	if	the	discarded	commit	remains	disconnected	from	the	commit
graph,	Git	will	delete	it	from	the	object	database	as	part	of	periodic	garbage
collection.

Having	dropped	the	previous	commit,	the	repository	state	you	want	to	change
and	re-commit	would	appear	to	be	lost…but	no:	there’s	another	copy	of	it	in	the
index,	since	that	commit	was	made	from	the	current	index.	So	you	simply
modify	the	index	as	desired,	and	commit	again.

Although	we	described	it	in	terms	of	a	linear	history,	git commit --amend
works	with	merge	commits	as	well;	then	there	are	multiple	parents	and	branches

involved	instead	of	just	one,	but	it	operates	analogously.

FIXING	A	COMMIT	MESSAGE

If	you	use	git commit --amend	without	making	any	changes	to	the	index,	Git	still	allows	you
to	edit	the	commit	message	if	you	like,	or	you	can	give	the	new	message	with	the	-m	option.
This	still	requires	replacing	the	last	commit,	since	the	message	text	is	part	of	the	commit;	the
new	commit	will	just	have	the	same	content	(point	to	the	same	tree)	as	the	previous	one.

Double	Oops!
Suppose	you’re	having	an	off	day	and,	having	committed	and	then	amended	that
commit,	you	suddenly	realize	that	you	just	lost	some	information	from	the	first
commit	that	you	didn’t	mean	to.	You	would	appear	to	be	out	of	luck:	that
commit	has	been	discarded,	and	unless	you	happen	to	have	its	object	ID,	you
have	no	way	to	refer	to	it,	even	though	it’s	still	in	the	object	database.	Git	has	a
feature	to	save	you,	though,	called	the	reflog:

$ git log -g

The	git log	command,	which	we	will	discuss	in	Chapter	9,	normally	shows	the
history	of	your	project	via	portions	of	the	commit	graph.	The	-g	option	shows
something	entirely	different,	however.	For	each	branch,	Git	maintains	a	log	of
operations	performed	while	on	that	branch,	called	its	“reflog.”	Recall	that	a
branch	is	just	a	ref	pointing	to	the	tip	commit	of	the	branch;	each	ref	can	have	a
log	recording	its	referents	over	time.	git log -g	displays	a	composite	reflog,
starting	with	the	current	branch	and	chaining	back	through	commands	that
switch	branches,	such	as	git checkout.	For	example:

$ git log -g

e674ab77 HEAD@{0}: commit (amend): Digital Restrictio…

965dfda4 HEAD@{1}: commit: Digital Rights Management

dd31deb3 HEAD@{2}: commit: Mozart

3307465c HEAD@{3}: commit: Beethoven

6273a3b0 HEAD@{4}: merge topic: Fast-forward

d77b78fa HEAD@{5}: checkout: moving from sol to master

6273a3b0 HEAD@{6}: commit: amalthea

2ee20b94 HEAD@{7}: pull: Merge made by the 'recursive…

d77b78fa HEAD@{8}: checkout: moving from master to sol

1ad385f2 HEAD@{9}: commit (initial): Anfang

The	reflog	shows	the	sequence	of	operations	performed:	commit,	pull,
checkout,	merge,	etc.	The	notation	branch@{n}	refers	to	a	numbered	entry	in
the	reflog	for	branch;	in	this	case	HEAD,	the	current	branch.	The	crucial	thing
for	us,	though,	is	the	first	column	of	object	IDs:	each	one	names	the	commit	that
was	the	branch	tip	after	the	operation	on	that	line	was	completed.	Thus,	when	I
made	the	commit	for	entry	#1	in	this	reflog,	with	the	comment	“Digital	Rights
Management,”	the	branch	moved	to	commit	965dfda4,	which	means	this	is	the
ID	for	that	commit.	After	I	used	git commit --amend	to	fix	the	commit
message,	the	branch	looked	like	this:

$ git log

e674ab77 Digital Restrictions Management

dd31deb3 Mozart

3307465c Beethoven

...

Commit	965dfda4	is	absent,	removed	from	the	history,	but	the	reflog	retains	a
record	of	it.	You	can	use	git show 965dfda4	to	view	the	diff	for	that	commit
and	recover	the	missing	information,	or	git checkout 965dfda4	to	move	your
working	tree	to	that	state,	if	that’s	more	convenient.

See	Names	Relative	to	the	Reflog	for	more	about	the	reflog.

Discarding	the	Last	Commit
Suppose	you	make	a	commit,	but	then	decide	that	you	weren’t	ready	to	do	that.
You	don’t	have	a	specific	fix	to	make,	as	with	git commit --amend;	you	just
want	to	“uncommit”	and	continue	working.	This	is	simple;	just	do:

$ git reset HEAD~

Unstaged changes after reset:

M Zeus

M Adonis

git reset	is	a	versatile	command,	with	several	modes	and	actions.	It	always
moves	the	head	of	the	current	branch	to	a	given	commit,	but	differs	in	how	it

treats	the	working	tree	and	index;	in	this	usage,	it	updates	the	index	but	leaves
the	working	tree	alone.	The	HEAD	ref	refers	to	the	tip	of	current	branch	as
always,	and	the	trailing	tilde	names	the	commit	prior	to	that	one	(see	Chapter	8).
Thus,	the	effect	of	this	command	is	to	move	the	branch	back	one	commit,
discarding	the	latest	one	(but	you	can	still	recover	it	via	reflog,	as	before).	Since
it	also	resets	the	index	to	match,	any	corresponding	changes	in	your	working	tree
are	now	unstaged	again,	which	Git	reports	as	shown	along	with	any	other
outstanding	changes	(the	M	is	for	“modified”;	it	may	also	show	A	for	“added,”	D
for	“deleted,”	and	so	on).

Discarding	Any	Number	of	Commits
In	the	foregoing	description,	the	only	thing	limiting	the	action	to	“the	last
commit”	is	the	expression	HEAD~;	it	works	just	as	well	to	discard	any	number	of
consecutive	commits	at	the	end	of	a	branch.	This	action	is	sometimes	called
“rewinding	the	branch.”	For	example,	to	discard	three	commits	resetting	the
branch	tip	to	the	fourth	commit	back,	do:

$ git reset HEAD~3

HEAD~3	refers	to	the	fourth	commit	back,	because	this	numbering	syntax	starts	at
zero;	HEAD	and	HEAD~0	are	equivalent.

When	discarding	more	than	one	commit,	some	further	options	to	git reset
become	useful:

--mixed
The	default:	makes	the	index	match	the	given	commit,	but	does	not	change
the	working	files.	Changes	made	since	the	last	commit	appear	unstaged.

--soft
This	resets	the	branch	tip	only,	and	does	not	change	the	index;	the	discarded
commit’s	changes	remain	staged.	You	might	use	this	to	stage	all	the	changes
from	several	previous	commits,	and	then	reapply	them	as	a	single	commit.

--merge
Tries	to	keep	your	outstanding	file	changes	while	rewinding	the	branch,

where	this	makes	sense:	files	with	unstaged	changes	are	kept,	while	files
differing	between	HEAD	and	the	given	commit	are	updated.	If	there	is
overlap	between	those	sets,	the	reset	fails.

--hard
Resets	your	working	files	to	match	the	given	commit,	as	well	as	the	index.
Any	changes	you’ve	made	since	the	discarded	commit	are	permanently	lost,
so	be	careful	with	this	option!	Resist	the	urge	to	make	an	alias	or	shortcut	for
using	git reset --hard;	you	will	probably	regret	it.

Undoing	a	Commit
Suppose	you	want	to	undo	the	effect	of	an	earlier	commit—you	don’t	want	to
edit	the	history	to	do	this,	but	rather	make	a	new	commit	undoing	the	earlier
commit’s	changes.	The	command	git revert	makes	this	easy;	just	give	it	the
commit	you	want	to	undo:

$ git revert 9c6a1fad

This	will	compute	the	diff	between	that	commit	and	the	previous	one,	reverse	it,
and	then	attempt	to	apply	that	to	your	working	tree	(you	may	have	merge
conflicts	to	resolve	if	intervening	changes	complicate	doing	that	automatically).
Git	will	prepare	a	commit	message	indicating	the	commit	being	reverted	and	its
subject,	which	you	can	edit.

Partial	Undo
If	you	only	want	to	undo	some	of	the	changes	from	an	earlier	commit,	you	can
use	a	combination	of	commands	we’ve	seen	before:

$ git revert -n commit

$ git reset

$ git add -p

$ git commit

$ git checkout .

The	-n	option	to	git revert	tells	Git	to	apply	and	stage	the	reverted	changes,

but	stop	short	of	making	a	commit.	You	then	unstage	all	the	changes	with	git
reset,	and	restage	only	those	you	want	using	the	interactive	git add -p.
Finally,	after	committing	the	subset	of	changes	you	want,	you	discard	the	rest	by
checking	out	the	contents	of	the	index,	overwriting	the	remaining	applied
changes	from	git revert.

Plain	git revert	will	complain	if	you	have	staged	changes	in	the	index	(that	is,
the	index	does	not	match	the	HEAD	commit),	since	its	purpose	is	to	make	a	new
commit	based	on	the	one	to	be	reverted,	and	it	would	lose	your	changes	if	it	reset
the	index	in	order	to	do	that.	git revert -n,	though,	will	not	complain	about
that,	since	it	is	not	making	a	commit.

Note	that	if	the	commit	you’re	reverting	deleted	a	file,	then	this	will	add	it	back.
After	git reset	though,	the	recovered	file	will	appear	as	“untracked”	to	Git,
and	git add -p	will	not	see	it;	you’ll	have	to	add	it	again	separately,	if	it’s	one
of	the	changes	you	want	to	make	(git add --interactive (-i)	can	help	with
that;	it’s	more	general,	and	git add -p	is	actually	a	commonly	used
subcommand	of	it).	Similarly,	the	final	checkout	will	not	remove	a	restored	file
that	you	chose	not	to	add;	you’ll	have	to	remove	it	yourself.	You	can	use	git
reset --hard	or	git clean,	but	be	careful	not	to	accidentally	remove	other
untracked	files	or	revert	other	working	tree	changes	you	may	have.

Editing	a	Series	of	Commits
git commit --amend	is	nice,	but	what	if	you	want	to	change	a	commit	that	is
now	a	few	steps	back	in	your	history?	Since	each	commit	refers	to	the	one
preceding	it,	changing	one	means	all	the	following	commits	must	be	replaced,
even	if	you	don’t	need	to	make	any	other	changes	to	them.	The	--amend	feature
works	as	simply	as	it	does	precisely	because	there	are	no	following	commits	to
consider.

In	fact,	Git	allows	you	to	edit	any	linear	sequence	of	commits	leading	up	to	a
branch	tip—not	only	with	regard	to	their	messages	and	contents,	but	also	to
rearrange	them,	remove	some,	collapse	some	together	or	split	some	into	further
commits.	The	feature	to	use	is	git rebase.	Rebasing	is	a	general	technique
intended	to	move	a	branch	from	one	location	to	another,	and	we	will	consider	it

more	fully	in	Rebasing.	While	moving	a	branch,	however,	it	also	lets	you	use	a
very	general	“sequence	editor”	to	transform	the	branch	at	the	same	time	(with
the	option	--interactive (-i)),	and	that	is	the	feature	we	want	here.	This
command:

$ git rebase -i HEAD~n

rewrites	the	last	n	commits	on	the	current	branch.	It	does	in	fact	ask	Git	to
“move”	the	branch,	but	the	destination	is	the	same	as	the	starting	point,	so	the
branch	location	does	not	actually	change,	and	you	get	to	use	the	sequence	editor
to	alter	commits	as	you	like	in	the	process.

In	response	to	this	command,	Git	starts	your	editor	and	presents	a	one-line
description	of	each	commit	in	the	range	indicated,	like	so:

action commit-ID subject

pick 51090ce fix bug #1234

pick 15f4720 edit man pages for spelling and grammar

pick 9b0e3dc add prototypes for the 'frobnitz' module

pick 583bb4e fix null pointer (We are not strong.)

pick 45a9484 update README

Watch	out:	the	order	here	is	that	in	which	the	commits	were	made	(and	in	which
they	will	be	remade),	which	is	generally	the	opposite	of	what	you	would	see
from	git log,	which	uses	reverse	chronological	order	(most	recent	commit
first).

Now	edit	the	first	column,	the	action,	to	tell	Git	what	you	want	to	do	with	each
commit.	The	available	actions	are:

pick
Use	the	commit	as-is.	Git	will	not	stop	for	this	commit	unless	there	is	a
conflict.

reword
Change	just	the	commit	message.	Git	allows	you	to	edit	the	message	before
reapplying	this	commit.

edit

Change	the	commit	contents	(and	message,	if	you	want).	Here,	Git	stops
after	remaking	this	commit	and	allows	you	to	do	whatever	you	want.	The
usual	thing	is	to	use	git	commit --amend	to	replace	the	commit,	then	git
rebase	--continue	to	let	Git	continue	with	the	rebase	operation.	However,
you	could	also	insert	further	commits,	perhaps	splitting	the	original	changes
up	into	several	smaller	commits.	Git	simply	picks	up	from	where	you	leave
off,	with	the	next	change	you	asked	it	to	make.

squash
Make	this	commit’s	changes	part	of	the	preceding	one.	To	meld	several
consecutive	commits	into	one,	leave	the	first	one	marked	pick	and	mark	the
remaining	ones	with	squash.	Git	concatenates	all	the	commit	messages	for
you	to	edit.

fixup
Like	squash,	but	discard	the	message	of	this	commit	when	composing	the
composite	message.

You	can	abbreviate	an	action	to	just	its	initial	letter,	such	as	r	for	reword.	You
can	also	reorder	the	lines	to	make	the	new	commits	in	a	different	order,	or
remove	a	commit	entirely	by	deleting	its	line.	If	you	want	to	cancel	the	rebase,
just	save	a	file	with	no	action	lines;	Git	will	abort	if	it	finds	nothing	to	do.	It	will
not	abort	if	you	just	leave	the	directions	as	you	found	them,	but	the	result	will	be
the	same	in	this	simple	case,	since	Git	will	find	it	does	not	need	to	remake	any
commits	in	order	to	follow	the	directions	(which	say	to	use	each	commit	as-is
with	pick).	At	any	point	when	Git	stops,	you	can	abort	the	entire	process	and
return	to	your	previous	state	with	git rebase --abort.

Conflicts
It’s	possible	to	ask	for	changes	that	invalidate	the	existing	commits.	For
example:	if	one	commit	adds	a	file	and	a	later	commit	changes	that	file,	and	you
reverse	the	order	of	these	commits,	then	Git	cannot	apply	the	new	first	patch,
since	it	says	to	alter	a	file	that	doesn’t	yet	exist.	Also,	patches	to	existing	files
rely	on	context,	which	may	change	if	you	edit	the	contents	of	earlier	commits.	In
this	case,	Git	will	stop,	indicate	the	problem,	and	ask	you	to	resolve	the	conflict

before	proceeding.	For	example:

error: could not apply fcff9f72... (commit message)

When you have resolved this problem, run "git rebase

--continue". If you prefer to skip this patch, run

"git rebase --skip" instead. To check out the

original branch and stop rebasing, run "git rebase

--abort".

Could not apply fcff9f7... (commit message)

Here,	Git	uses	the	same	mechanism	for	indicating	conflicts	as	when	performing
a	merge;	see	Merge	Conflicts	for	details	on	how	to	examine	and	resolve	them.
When	you’re	done,	as	indicated	above,	just	run	git rebase --continue	to
make	the	now-repaired	commit,	and	move	on	to	the	next	edit.

TIP

When	you	ask	to	edit	a	commit,	Git	stops	after	making	the	commit,	and	you	use	git commit	-
-amend	to	replace	it	before	going	on.	When	there’s	a	conflict,	however,	Git	cannot	make	all	the
requested	changes,	so	it	stops	before	making	the	commit	(having	made	and	staged	whatever
changes	it	can,	and	marked	the	conflicts	for	you	to	resolve).	When	you	continue	after	resolving
the	conflicts,	Git	will	then	make	the	current	commit.	You	do	not	commit	yourself	or	use	the	--
amend	feature	when	fixing	a	conflict.

The	exec	Action
There	is	actually	another	action,	exec,	but	you	would	not	edit	an	existing	line	in
the	rebase	instructions	to	use	it	as	with	the	other	actions,	since	it	does	not	say	to
do	anything	with	a	commit;	rather,	the	rest	of	the	line	is	a	just	shell	command	for
Git	to	run.	A	typical	use	for	this	is	to	test	the	preceding	commit	in	some	way,	to
make	sure	you	haven’t	accidentally	broken	the	content;	you	might	add	exec
make test,	for	example,	to	run	an	automated	software	test.	Git	will	stop	if	an
exec	command	exits	with	a	nonzero	status.	You	can	also	give	a	single	command
with	the	git rebase --exec	option,	which	will	be	run	after	every	commit;	this
is	a	shortcut	for	inserting	that	same	exec	line	after	every	commit	in	the
sequencer	directions.

Chapter	5.	Branching

Now	that	you	know	how	to	create	a	repository	and	commit	to	a	single	branch,
it’s	time	to	learn	about	using	multiple	branches.	Branches	allow	different
versions	of	the	same	content	to	evolve	independently	at	the	same	time,	while	you
periodically	recombine	the	contributions	from	different	branches	in	a	process
called	“merging.”	When	you	switch	from	one	branch	to	another,	Git	updates
your	working	tree	to	reflect	the	state	of	the	repository	content	in	the	tip	commit
of	the	new	branch.

A	typical	use	for	a	branch	is	to	work	on	a	new	software	feature	in	isolation,
without	adding	it	to	the	main	line	of	development	of	the	project;	these	are	often
called	“feature”	or	“topic”	branches.	You	work	on	the	feature	branch	while
developing	that	feature,	and	switch	to	the	master	branch	to	work	on	the	main
project	(which	does	not	yet	contain	the	new	feature	code).	Periodically,	you
merge	master	into	your	feature	branch,	so	you’re	working	on	up-to-date	code
and	notice	and	resolve	any	conflicts.	When	the	feature	is	ready,	you	do	the
opposite:	merge	the	feature	branch	into	master,	adding	the	new	code	to	the	main
version	of	the	project.

Another	use	for	multiple	branches	is	to	continue	maintenance	on	older	versions
of	software.	When	you	release	version	1.0	of	your	product,	it	gets	its	own
branch.	Product	development	continues,	but	you	may	need	to	apply	bug	fixes	or
new	features	to	that	version	even	after	you’ve	released	2.0,	for	customers	who
are	still	using	the	older	version;	the	1.0	branch	allows	you	to	do	that	(and	git
cherry-pick	is	particularly	useful	in	this	case;	see	git	cherry-pick).

The	man	page	gitworkflows(7)	presents	several	branching	disciplines	that	may
be	directly	useful,	or	give	you	ideas	on	how	to	structure	your	own	projects	in
other	ways.	Some	of	these	are	used	in	the	development	of	Git	itself.

The	Default	Branch,	master

A	new	Git	repository	created	with	git init	has	a	single	branch	with	the	default
name	master.	There	is	nothing	special	about	this	name	aside	from	being	used	as
a	default,	and	you	can	rename	or	delete	it	if	you	like.	The	master	branch	is
conventionally	used	if	there	is	only	one	branch	in	a	repository,	or	if	there	are
several	but	there	is	a	single,	clear	main	line	of	development.

If	you	try	to	use	the	master	branch	in	a	brand-new	repository,	however,	you’ll
get	perhaps	unexpected	results;	for	example:

$ git init

Initialized empty Git repository in /u/res/zork/.git/

$ git log

fatal: bad default revision 'HEAD'

Git	could	be	more	helpful	here,	since	getting	a	“fatal”	error	with	a	newly	created
repository	strongly	suggests	that	something	is	broken.	The	error	message	is
technically	correct,	though.	Git	has	initialized	the	HEAD	ref	to	point	to	master,
making	master	the	current	branch.	However,	a	branch	name	is	just	a	ref	pointing
to	the	latest	commit	on	the	branch—and	there	are	no	commits	yet	in	this	new,
empty	repository,	and	so	there	is	no	master	branch	ref	yet.	When	you	make	your
first	commit,	Git	will	create	the	master	branch	with	it.

Making	a	New	Branch
The	usual	way	to	make	a	new	branch	named	alvin	is:

$ git checkout -b alvin

Switched to a new branch 'alvin'

This	creates	the	branch	alvin	pointing	at	the	current	commit,	and	switches	to	it.
Any	existing	changes	to	the	index	or	working	tree	are	preserved	and	will	now	be
committed	to	alvin	rather	than	to	the	previous	branch	(which	is	still	there).	Until
one	branch	progresses,	both	branches	point	to	the	same	commit.	Until	both
progress	independently,	one	branch	still	points	to	an	earlier	commit	on	the	other.
See	Figure	5-1.

Figure	5-1.	The	progress	of	branch	namesYou	can	also	specify	a	commit	at	which	to	start	the	new	branch,	rather	than	the
current	one,	for	example:

$ git checkout -b simon 9c6a1fad

Switched to a new branch 'simon'

This	starts	a	new	branch	at	the	named	commit	and	switches	to	it.	If	you	have
conflicting	uncommitted	changes,	though,	you	will	have	to	deal	with	them	first.
If	you	want	to	create	the	new	branch	but	not	switch	to	it,	use	git branch simon
instead.

Switching	Branches
The	usual	tool	for	switching	branches	is	git checkout,	of	which	the	-b	option
given	previously	is	just	a	special	case:	switching	to	a	branch	that	doesn’t	yet
exist	is	creating	a	new	branch.

The	only	thing	that	has	to	happen	to	switch	branches	is	to	change	the	HEAD
symbolic	ref	to	point	to	the	new	branch	name.	The	HEAD	by	definition	indicates
the	branch	that	you	are	“on,”	and	switching	to	a	branch	means	that	you	are	then
“on”	that	branch.	Here,	git symbolic-ref HEAD	shows	the	ref	(branch	name)
to	which	HEAD	points:

$ git symbolic-ref HEAD

refs/heads/theodore

$ git checkout simon

Switched to branch 'simon'

$ git symbolic-ref HEAD

refs/heads/simon

Technically,	you	could	update	the	HEAD	ref	directly	with	git update-ref,	but
this	isn’t	usually	done	and	would	be	very	confusing	by	itself;	normally,	you	want
your	working	tree	and	index	to	match	the	new	branch	tip	when	you	switch
branches,	taking	into	account	any	uncommitted	changes	you	may	have.	git
checkout	does	all	of	these	things,	and	more.	Suppose	you	have	two	branches
named	master	and	commander,	and	you’re	currently	on	master.	To	switch	to
commander,	simply	use:

$ git checkout commander

Switched to branch 'commander'

This	attempts	to	do	three	things:
1.	 Change	the	HEAD	symref	to	point	to	the	commander	branch

2.	 Reset	the	index	to	match	the	tip	of	the	new	branch

3.	 Update	the	working	tree	to	match	the	index	(this	is	called	“checking	out”
the	index,	which	gives	the	command	its	name)

If	these	succeed,	then	you	are	now	on	the	commander	branch,	with	an	index	and
working	tree	that	match	the	tip	of	that	branch.	The	following	are	some	possible
complications.

Uncommitted	Changes
Suppose	you	have	uncommitted	changes	to	a	tracked	file	when	you	try	to	switch
branches.	There	are	now	four	versions	of	the	file	in	play:	the	two	in	the	tip
commits	of	the	master	and	commander	branches,	and	the	two	in	your	working
tree	and	index	(one	or	both	of	which	have	been	altered,	depending	on	whether
you	have	staged	the	changes	with	git add).	If	the	committed	versions	in	the
current	and	destination	branches	are	the	same,	then	Git	will	preserve	your	altered
versions	when	switching	branches,	since	they	represent	the	same	sets	of	changes
in	the	new	branch	as	in	the	old.	It	reminds	you	of	a	modified	file	foo	thus:

$ git checkout commander

M foo

Switched to branch 'commander'

If	the	committed	versions	differ,	however,	or	if	the	file	does	not	exist	at	all	in	the
destination	branch,	then	Git	warns	you	and	refuses	to	switch:

$ git checkout commander

error: Your local changes to the following files would

be overwritten by checkout:

 foo

Please, commit your changes or stash them before you

can switch branches. Aborting

stash	refers	to	the	git stash	command,	which	lets	you	conveniently	save	and
restore	uncommitted	changes;	see	git	stash.

Check	Out	with	Merge
git checkout	has	a	--merge (-m)	option	to	help	with	this	case.	It	performs	a
three-way	merge	between	your	working	tree	and	the	new	branch,	with	the
current	branch	as	the	base;	it	leaves	you	on	the	new	branch,	with	the	merge
result	in	the	working	tree.	As	with	any	merge,	you	may	have	conflicts	to	resolve;
see	Merge	Conflicts.

Untracked	Files
Git	ignores	untracked	files	while	switching	branches,	unless	the	file	exists	in	the
target	branch;	then	it	aborts,	even	if	the	versions	in	the	working	tree	and
destination	branch	are	the	same.	You	can	use	the	--merge	option	to	get	around
this	without	having	to	delete	the	untracked	file,	only	to	have	Git	restore	it	a
moment	later.	The	merge	operation	results	in	the	same	file,	in	this	case.

Losing	Your	Head
If	you	directly	check	out	a	specific	commit	rather	than	a	branch,	say	with	a
command	like	git checkout 520919b0,	then	Git	gives	the	odd	and	rather	dire-
sounding	warning	that	you	are	now	in	“detached	HEAD	state.”	Fear	not,
Ichabod;	all	will	be	well.	“Detached	HEAD”	simply	means	that	the	HEAD	ref
now	points	directly	at	a	commit	rather	than	referring	to	a	particular	branch	by
name.	Git	operates	normally	in	this	mode:	you	can	make	commits,	and	the
HEAD	ref	moves	forward	as	usual.	The	important	thing	to	remember	is	that
there	is	no	branch	tracking	this	work,	so	if	you	switch	back	to	a	branch	with	git
checkout branch,	you	will	simply	discard	any	commits	you’ve	made	while	in
detached	HEAD	mode:	the	HEAD	ref	then	points	to	the	branch	you’re	on,	and
no	ref	remains	marking	the	commit	you	left.	Git	warns	you	about	this	too,	along
with	the	commit	ID	you	just	left	so	that	you	can	go	back	to	it	if	you	want.	You
can	give	your	anonymous	branch	a	name	at	any	time	while	you’re	in	detached
HEAD	mode,	with	git checkout -b name.

Deleting	a	Branch
When	you	ask	Git	to	delete	a	branch,	it	simply	deletes	a	pointer:	a	branch	name
ref	that	points	to	the	branch	tip.	It	does	not	delete	the	content	of	the	branch,	that
is,	remove	from	the	object	database	all	commits	reachable	from	the	pointer;	it
couldn’t	necessarily	do	that	safely	even	if	that	were	desired,	since	some	of	those
commits	might	be	part	of	other	branches.	To	delete	the	branch	simon,	then:

$ git branch -d simon

Deleted branch simon (was 6273a3b0).

It	may	not	be	so	simple,	though;	you	might	see	this	instead:

$ git branch -d simon

error: The branch 'simon' is not fully merged.

If you are sure you want to delete it, run

'git branch -D simon'.

Git	is	warning	that	you	might	lose	history	by	deleting	this	branch.	Even	though	it
would	not	actually	delete	any	commits	right	away,	some	or	all	of	the	commits	on
the	branch	would	become	unreachable	if	they	are	not	part	of	some	other	branch
as	well.	You	could	undo	this	mistake	easily	if	you	noticed	it	right	away,	as	Git
names	the	commit	ID	of	the	branch	ref	it	removes,	and	it	might	be	in	a	reflog	as
well;	you	could	use	git checkout -b simon 6273a3b0	to	restore	the	branch.
It	would	get	harder	if	you	didn’t	notice	until	later,	though,	and	perhaps
impossible	if	that	were	after	garbage	collection	had	actually	deleted	the	commits
in	question,	and	no	one	else	had	a	copy	of	them.

For	the	branch	simon	to	be	“fully	merged”	into	another	branch,	its	tip	commit
must	be	an	ancestor	of	the	other	branch’s	tip,	making	the	commits	in	simon	a
subset	of	the	other	branch.	This	makes	it	safe	to	delete	simon,	since	all	its
commits	will	remain	part	of	the	repository	history	via	the	other	branch.	It	must
be	“fully”	merged,	because	it	may	have	been	merged	several	times	already,	but
now	have	commits	added	since	the	last	merge	that	are	not	contained	in	the	other
branch.

Git	doesn’t	check	every	other	branch	in	the	repository,	though;	just	two:
1.	 The	current	branch	(HEAD)

2.	 The	upstream	branch,	if	there	is	one

The	“upstream	branch”	for	simon	would	usually	be	origin/simon,	referring	to	a
branch	in	the	repository	from	which	this	one	was	cloned,	and	with	which	this
local	simon	branch	coordinates	via	the	push/pull	mechanism.	You	can	list
upstream	branches	with	git branch -vv;	the	upstream	for	each	branch,	if	any,
is	listed	in	square	brackets	on	the	right:

$ git branch -vv

* master 8dd6fdc0 [origin/master: ahead 6] find acorns

 simon 6273a3b0 [origin/simon]: sing shrilly

If	simon	is	fully	merged	in	the	current	branch,	then	Git	deletes	it	with	no
complaint.	If	it	is	not,	but	it	is	fully	merged	in	its	upstream	branch,	then	Git
proceeds	with	a	warning:

$ git branch -d simon

warning: deleting branch 'simon' that has been merged

to 'refs/remotes/origin/simon', but not yet merged to

HEAD.

Deleted branch simon (was 6273a3b0).

Being	fully	merged	in	its	upstream	indicates	that	the	commits	in	simon	have
been	pushed	to	the	origin	repository,	so	that	even	if	you	lose	them	here,	they
may	at	least	be	saved	elsewhere.

In	Figure	5-2,	simon	has	been	merged	into	master	before,	but	it	and	master	have
diverged	since	commit	2,	and	so	simon	is	not	now	“fully	merged”	into	master.	It
is	fully	merged	into	the	upstream	branch	origin/master,	however.

Since	Git	doesn’t	check	other	branches,	it	may	be	safe	to	delete	a	branch	because
you	know	it	is	fully	merged	into	another	one;	you	can	do	this	with	the	-D	option
as	indicated,	or	switch	to	that	branch	first	and	let	Git	confirm	the	fully	merged
status	for	you.

Figure	5-2.	“merged”	and	“fully	merged”

Deleting	the	branch	from	the	origin	repository	is	not	so	obvious:

$ git push origin :simon

This	is	the	general	syntax	for	directly	updating	a	remote	ref.	In	this	case,	the
local	object	name	to	the	left	of	the	colon	is	blank,	meaning	to	just	delete	the
remote	ref.

WHEN	TO	DELETE	A	BRANCH?

You	most	commonly	delete	a	branch	when	it	is	private	to	you—that	is,	you	created	it	in	your
own	repository	and	have	never	pushed	it	elsewhere,	and	you	have	no	further	use	for	it.	You	can
delete	a	branch	from	an	upstream	repository	as	just	shown	(assuming	you’re	allowed	to),	but
the	effect	of	that	does	not	automatically	spread	to	other	people	coordinating	through	that
repository.	Their	git pull	will	not	delete	their	corresponding	remote-tracking	branch	(they
would	need	to	use	git fetch --prune	for	that),	and	any	corresponding	local	downstream
branches	they’ve	created	in	their	own	repositories	will	not	be	affected	in	any	case.	The	general
principle	at	work	here	is	that	a	branch	indicates	a	set	of	commits	that	are	of	interest;	once	a
branch	exists	in	your	repository,	it’s	up	to	you	to	decide	whether	you’re	no	longer	interested.
Another	person’s	action	should	not	unilaterally	make	that	decision	for	you.

Renaming	a	Branch
Renaming	a	local	branch	is	simple:

$ git branch -m old new

There	is	no	direct	way	to	rename	the	corresponding	branch	in	a	remote
repository,	however;	you	must	separately	push	the	new	branch	and	delete	the	old
one:

$ git push -u origin new

$ git push origin :old

You	will	need	to	tell	others	that	you’ve	done	this,	since	when	they	pull	they	will
get	the	new	branch,	but	they	will	have	to	manually	delete	the	old	name	with	git
branch -d.	“Renaming”	a	branch	is	not	actually	a	Git	operation	per	se;	git
branch -m	is	just	a	shortcut	for	the	create/delete	routine.

Chapter	6.	Tracking	Other
Repositories

This	chapter	discusses	copying	or	“cloning”	an	existing	repository,	and	thereafter
sharing	changes	between	original	and	clone	using	the	Git	“push”	and	“pull”
commands.

Cloning	a	Repository
The	git clone	command	initializes	a	new	repository	with	the	contents	of
another	one	and	sets	up	tracking	branches	in	the	new	repository	so	that	you	can
easily	coordinate	changes	between	the	two	with	the	push/pull	mechanism.	We
call	the	first	repository	a	“remote”	(even	if	it	is	in	fact	on	the	same	host),	and	by
default,	this	remote	is	named	origin;	you	can	change	this	with	the	--origin (-
o)	option,	or	with	git remote rename	later	on.	You	can	view	and	manipulate
remotes	with	git remote;	a	repository	can	have	more	than	one	remote	with
which	it	synchronizes	different	sets	of	branches.

After	cloning	the	remote	repository,	Git	checks	out	the	remote	HEAD	branch
(often	master);	you	can	have	it	check	out	a	different	branch	with	-b branch,	or
none	at	all	with	-n:

$ git clone http://nifty-software.org/foo.git

Cloning into 'foo'...

remote: Counting objects: 528, done.

remote: Compressing objects: 100% (425/425), done.

remote: Total 528 (delta 100), reused 528 (delta 100)

Receiving objects: 100% (528/528), 1.31 MiB | 1.30 Mi…

Resolving deltas: 100% (100/100), done.

If	you	give	a	second	argument,	Git	will	create	a	directory	with	that	name	for	the
new	repository	(or	use	an	existing	directory,	so	long	as	it’s	empty);	otherwise,	it

derives	the	name	from	that	of	source	repository	using	some	ad	hoc	rules.	For
example,	foo	stays	foo,	but	foo.git	and	bar/foo	also	become	foo.

You	can	specify	the	remote	repository	with	a	URL	as	shown,	or	with	a	simple
path	to	a	directory	in	the	filesystem	containing	a	Git	repository.	Git	supports	a
number	of	transport	schemes	natively	to	access	remote	repositories,	including
HTTP,	HTTPS,	its	own	git	protocol,	FTP,	FTPS,	and	rsync.

Git	will	also	automatically	use	SSH	if	you	use	the	ssh	URL	scheme	(ssh://),	or
give	the	repository	as	[user@]host:/path/to/repo;	this	uses	SSH	to	run	git
upload-pack	on	the	remote	side.	If	the	path	is	relative	(no	leading	slash),	then	it
is	usually	relative	to	the	home	directory	of	the	login	account	on	the	server,
though	this	depends	on	the	SSH	server	configuration.	You	can	specify	the	SSH
program	to	use	with	the	environment	variable	GIT_SSH	(the	default	is,
unsurprisingly,	ssh).	With	the	long	form	you	can	also	give	a	TCP	port	number
for	the	server,	e.g.,	ssh://nifty-software.org:2222/foo.

Clones	and	Hard	Links
When	you	give	the	origin	repository	as	a	simple	directory	name,	and	the	new
repository	is	on	the	same	filesystem,	Git	uses	Unix	“hard	links”	to	the	originals
for	certain	files	instead	of	copying	them	when	populating	the	object	database	of
the	clone,	saving	time	and	disk	space.	This	is	safe	for	two	reasons.	First,	the
semantics	of	hard	links	are	such	that	someone	deleting	a	shared	file	in	the	origin
repository	has	no	effect	on	you;	files	remain	accessible	until	the	last	link	is
removed.	Second,	because	of	content-based	addressing,	Git	objects	are
immutable;	an	object	with	a	given	ID	will	not	suddenly	change	out	from	under
you.	You	can	turn	off	this	feature	and	force	actual	copying	with	--no-
hardlinks,	or	by	using	a	URL	with	the	“file”	scheme	to	access	the	same	path:
file:///path/to/repo.git	(the	empty	hostname	between	the	second	and	third	slash
indicates	the	local	host).

NOTE

When	we	refer	to	a	“local”	repository	in	this	section,	we	mean	one	accessible	to	Git	using	the
filesystem,	as	opposed	to	needing	an	explicit	network	connection	(SSH,	HTTP,	and	so	on).
That	may	not	in	fact	be	“local”	to	the	host	itself,	however	(meaning	on	hardware	directly
attached	to	it);	it	could	be	on	a	file	server	accessed	over	the	network	via	NFS	or	CIFS,	for

example.	Thus,	a	repository	that	is	“local”	to	Git	might	still	be	“remote”	from	the	host.

Shared	Clone
An	even	faster	method	when	cloning	a	local	repository	is	the	--shared	option.
Rather	than	either	copy	or	link	files	between	the	origin	and	clone	repositories,
this	simply	configures	the	clone	to	search	the	object	database	of	the	origin	in
addition	to	its	own.	Initially,	the	object	database	of	the	clone	is	completely
empty,	because	all	the	objects	it	needs	are	in	the	origin.	New	objects	you	create
in	the	clone	are	added	to	its	own	database;	the	clone	never	modifies	the	origin’s
database	via	this	link.

It’s	important	to	keep	in	mind,	though,	that	the	clone	is	now	dependent	on	the
origin	repository	to	function;	if	the	origin	is	not	accessible,	Git	may	abort,
complaining	that	its	object	database	is	corrupted	because	it	can’t	find	objects	that
used	to	be	there.	If	you	know	you’re	going	to	remove	the	origin	repository,	you
can	use	git repack -a	in	the	clone	to	force	it	to	copy	all	the	objects	it	needs
into	its	own	database.	If	you	have	to	recover	from	accidentally	deleting	the
origin,	you	can	edit	.git/objects/info/alternates	if	you	have	another	local	copy.
You	can	also	add	the	other	repository	with	git remote add,	then	use	git
fetch --all	remote	to	pull	over	the	objects	you	need.

Another	issue	with	shared	clones	is	garbage	collection:	if	garbage	collection	is
later	run	on	the	remote	and	by	then	it	has	removed	some	refs	you	still	have,
objects	that	are	still	part	of	your	history	may	just	disappear,	again	leading	to
“database	corrupted”	errors	on	your	side.

Bare	Repositories
A	“bare”	repository	is	one	without	a	working	tree	or	index,	created	by	git init
--bare;	the	files	normally	under	.git	are	right	inside	the	repository	directory
instead.	A	bare	repository	is	usually	a	coordination	point	for	a	centralized
workflow:	each	person	pushes	and	pulls	to	and	from	the	bare	copy,	which
represents	the	current	“official”	state	of	the	project.	No	one	uses	the	bare	copy
directly,	so	it	doesn’t	need	a	working	tree	(you	can’t	push	into	a	non-bare
repository	if	the	push	tries	to	update	the	currently	checked-out	branch,	as	that
would	change	the	branch	out	from	under	the	person	using	it).	Another	use	for	a

bare	repository,	using	git clone --bare,	is	shown	in	the	next	section.

Reference	Repositories
Suppose	that:

You	want	to	have	checkouts	of	multiple	branches	of	the	same	project	at	once;
or

Several	people	with	access	to	the	same	filesystem	want	clones	of	the	same
repository;	or

Some	process	requires	you	to	clone	the	same	repository	frequently

…and	that	the	repository	takes	a	long	time	to	clone;	perhaps	it	has	a	large
history,	or	there’s	a	slow	network	link	in	the	way.	A	solution	is	to	share	one	local
copy	of	the	object	database,	rather	than	pull	it	over	repeatedly,	but	using	git
clone --shared	is	awkward	for	this,	because	it	introduces	two	levels	of
push/pull:	you	push	from	your	clone	to	the	local	shared	(bare)	clone,	and	then
you	have	to	push	from	there	to	the	origin	(and	similarly	for	pull).

Git	has	another	option	that	exactly	fits	this	bill:	a	“reference	repository.”	Here’s
how	it	works:	first,	we	make	a	bare	clone	of	the	remote	repository,	to	be	shared
locally	as	a	reference	repository	(hence	named	“refrep”):

$ git clone --bare http://foo/bar.git refrep

Cloning into 'refrep'...

remote: Counting objects: 21259, done.

remote: Compressing objects: 100% (6730/6730), done.

Receiving objects: 100% (21259/21259), 39.84 MiB | 12…

remote: Total 21259 (delta 15427), reused 20088 (delt…

Resolving deltas: 100% (15427/15427), done.

Then,	we	clone	the	remote	again,	but	this	time	giving	refrep	as	a	reference:

$ git clone --reference refrep http://foo/bar.git

Cloning into 'bar'...

done.

This	happens	very	quickly,	and	you	see	no	messages	about	transferring	objects,

because	none	were	needed;	all	the	objects	were	already	available	in	the	reference
repository.	Others	using	this	repository	in	your	site	can	use	this	command	to
create	their	clones	as	well,	sharing	the	reference.

The	key	difference	between	this	and	the	--shared	option	is	that	you	are	still
tracking	the	remote	repository,	not	the	refrep	clone.	When	you	pull,	you	still
contact	http://foo/,	but	you	don’t	need	to	wait	for	it	to	send	any	objects	that	are
already	stored	locally	in	refrep;	when	you	push,	you	are	updating	the	branches
and	other	refs	of	the	foo	repository	directly.

Of	course,	as	soon	as	you	and	others	start	pushing	new	commits,	the	reference
repository	will	become	out	of	date,	and	you’ll	start	to	lose	some	of	the	benefit.
Periodically,	you	can	run	git fetch --all	in	refrep	to	pull	in	any	new	objects.
A	single	reference	repository	can	be	a	cache	for	the	objects	of	any	number	of
others;	just	add	them	as	remotes	in	the	reference:

$ git remote add zeus http://olympus/zeus.git

$ git fetch --all zeus

WARNING

1.	 You	can’t	safely	run	garbage	collection	in	a	reference	repository.	Someone	using	it	may
be	still	using	a	branch	that	has	been	deleted	in	the	upstream	repository,	or	otherwise
have	references	to	objects	that	have	become	unreachable	there.	Garbage	collection
might	delete	those	objects,	and	that	person’s	repository	would	then	have	problems,	as	it
now	can’t	find	objects	it	needs.	Some	Git	commands	periodically	run	garbage
collection	automatically,	as	routine	maintenance.	You	should	turn	off	pruning	of
unreachable	objects	in	the	reference	repository	with	git config gc.pruneexpire
never.	This	still	allows	other	safe	operations	to	run	during	garbage	collection,	such	as
collecting	objects	stored	in	individual	files	(“loose	objects”)	into	more	efficient	data
structures	called	“packs.”	Since	people	don’t	normally	use	a	reference	repository
directly	and	thus	won’t	trigger	automatic	garbage	collection,	you	may	want	to	arrange
for	a	periodic	job	to	run	git gc	in	a	reference	repository	(after	setting
gc.pruneexpire	as	shown).

2.	 Be	careful	about	security.	If	you	have	restricted	who	can	clone	a	repository,	but	then
add	its	objects	to	a	reference,	then	anyone	who	can	read	the	files	in	the	reference	can
get	the	same	information.

Local,	Remote,	and	Tracking	Branches

When	you	clone	a	repository,	Git	sets	up	“remote-tracking”	branches
corresponding	to	the	branches	in	the	origin	repository.	These	are	branches	in
your	local	repository,	which	show	you	the	state	of	the	origin	branches	at	the	time
of	your	last	push	or	pull.	When	you	check	out	a	branch	that	doesn’t	yet	exist,	but
there	is	a	remote-tracking	branch	by	that	name,	Git	automatically	creates	it	and
sets	its	upstream	to	be	that	tracking	branch,	so	that	subsequent	push/pull
operations	will	synchronize	your	local	version	of	this	branch	with	the	remote’s
version.	For	example,	when	you	first	clone	a	repository,	Git	checks	out	the
remote’s	HEAD	branch,	so	this	happens	right	away	for	one	branch:

$ git clone git://nifty-software.org/nifty.git

...

$ cd nifty

$ git branch --all

master

origin/master

origin/topic

To	begin	with,	your	local	and	remote-tracking	branches	for	master	are	at	the
same	commit:

$ git log --oneline --decorate=short

3a9ee5f3 (origin/master, master) in principio

If	you	add	a	commit,	you	will	see	your	branch	pull	ahead:

$ git log --oneline --decorate=short

3307465c (master) the final word

3a9ee5f3 (origin/master) in principio

If	you	run	git fetch,	you	may	find	that	someone	else	has	also	added	a	commit,
and	the	branches	have	now	diverged:

$ git log --graph --all

* commit baa699bc (origin/master)

| Author: Nefarious O. Committer <nefarious@qoxp.net>

| Date: Fri Aug 24 09:33:10 2012 -0400

|

| not quite

|

| * commit 3307465c (master)

|/ Author: Richard E. Silverman <res@qoxp.net>

| Date: Fri Aug 24 09:32:54 2012 -0400

|

| the final word

|

* commit 3a9ee5f3

 Author: Mysterious Author <ma@qoxp.net>

 Date: Fri Aug 24 09:42:27 2012 -0400

 in principio

git pull	will	try	to	merge	the	now-distinct	branches,	which	is	necessary	before
you	can	push	your	changes;	otherwise,	git push	would	update	origin/master	to
match	your	master,	and	lose	commit	baa699bc	in	the	process.

Synchronization:	Push	and	Pull
Having	cloned	a	repository,	you	use	git push	and	git pull	to	reconcile	your
changes	with	those	of	others	using	the	same	upstream	repository.	Various	things
can	happen	when	your	changes	conflict	with	theirs;	we’ll	start	discussing	that
here,	and	continue	in	Chapter	7.

Pulling
If	a	branch	foo	is	tracking	a	branch	in	a	remote	repository,	that	remote	is
configured	as	branch.foo.remote	in	this	repository,	and	is	said	to	be	the
remote	associated	with	this	branch,	or	just	the	“remote	of	this	branch.”	git pull
updates	the	tracking	branches	of	the	remote	for	the	current	branch	(or	of	the
origin	remote	if	the	branch	has	none),	fetching	new	objects	as	needed	and
recording	new	upstream	branches.	If	the	current	branch	is	tracking	an	upstream
in	that	remote,	Git	then	tries	to	reconcile	the	current	state	of	your	branch	with
that	of	the	newly	updated	tracking	branch.	If	only	you	or	the	upstream	has	added
commits	to	this	branch	since	your	last	pull,	then	this	will	succeed	with	a	“fast-
forward”	update:	one	branch	head	just	moves	forward	along	the	branch	to	catch
up	with	the	other.	If	both	sides	have	added	commits,	though,	then	a	fast-forward
update	is	not	possible:	just	setting	one	side’s	branch	head	to	match	the	other
would	discard	the	opposite	side’s	new	commits	(they	would	become	unreachable

from	the	new	head).	This	is	the	situation	shown	previously,	and	the	solution	is	a
merge:

$ git log --graph --oneline

* 2ee20b94 (master, origin/master) Merge branch…

|\

| * 3307465c the final word

* | baa699bc not quite

|/

* 3a9ee5f3 in principio

The	merge	commit	2ee20b94	brings	together	the	divergent	local	and	upstream
versions	of	the	branch,	and	allows	both	master	and	origin/master	to	advance	to
the	same	commit	without	losing	information.	git pull	will	automatically
attempt	this,	and	if	it	can	combine	the	actual	changes	cleanly,	this	will	all	happen
smoothly.	If	not,	Git	will	stop	and	ask	you	to	deal	with	the	conflicts	before
making	the	merge	commit;	we’ll	discuss	that	process	in	Chapter	7.

Pushing
git push	is	the	converse	of	git pull,	with	which	you	apply	your	changes	to
the	upstream	repository.	If,	as	before,	your	history	has	diverged	from	that	of	the
remote,	Git	will	refuse	to	push	unless	you	address	the	divergence,	which	you	do
by	pulling	first	(as	Git	helpfully	reminds	you):

$ git push

To git://nifty-software.org/nifty.git

! [rejected] master -> master (non-fast-forward)

error: failed to push some refs to 'git://nifty-softw…

hint: Updates were rejected because the tip of your

hint: current branch is behind its remote

hint: counterpart. Merge the remote changes

hint: (e.g. 'git pull') before pushing again. See

hint: the 'Note about fast-forwards' in 'git push

hint: --help' for details.

Once	you	pull	and	resolve	any	conflicts,	you	can	push	again	successfully.	The
goal	of	pulling	with	regard	to	pushing	is	to	integrate	the	upstream	changes	with
your	own	so	that	you	can	push	without	discarding	any	commits	in	the	upstream
history.	You	may	accomplish	that	by	merging	as	previously	shown,	or	by

“rebasing”	(see	Pull	with	Rebase).

If	you	have	added	a	local	branch	of	your	own	and	want	to	start	sharing	it	with
others,	use	the	-u	option	to	have	Git	add	your	branch	to	the	remote,	and	set	up
tracking	for	your	local	branch	in	the	usual	way,	for	example:

$ git push -u origin new-branch

After	this	initial	setup	you	can	use	just	git push	on	this	branch,	with	no	options
or	arguments,	to	push	to	the	same	remote.

Push	Defaults
There	are	several	approaches	Git	can	use	when	given	no	specific	remote	and	ref
to	push	(just	plain	git push,	as	opposed	to	git push remote branch):

matching
Push	all	branches	with	matching	local	and	remote	names

upstream
Push	the	current	branch	to	its	upstream	(making	push	and	pull	symmetric
operations)

simple
Like	upstream,	but	check	that	the	branch	names	are	the	same	(to	guard
against	mistaken	upstream	settings)

current
Push	the	current	branch	to	a	remote	one	with	the	same	name	(creating	it	if
necessary)

nothing
Push	nothing	(require	explicit	arguments)

You	can	set	this	with	the	push.default	configuration	variable.	The	default	as	of
this	writing	is	matching,	but	with	Git	2.0,	this	will	change	to	simple,	which	is
more	conservative	and	avoids	easy	accidental	pushing	of	changes	on	other

branches	that	are	not	yet	ready	to	be	published.	To	choose	an	option,	think	about
what	would	happen	in	your	particular	situation	if	you	accidentally	typed	git
push	with	each	of	these	options	in	force,	and	pick	the	one	that	makes	you	most
comfortable.	Remember	that	like	all	options,	you	can	set	this	on	a	per-repository
basis	(see	Basic	Configuration).

Pull	with	Rebase
Along	with	the	facility	of	merge	commits	comes	the	need	to	make	them	wisely.
The	notion	of	what	a	merge	should	indicate	with	respect	to	content	is	subjective
and	varies	as	a	matter	of	version	control	discipline	and	style,	but	generally	you
want	a	merge	to	point	out	a	substantive	combination	of	two	lines	of
development.	Certainly,	too	many	merges	creates	a	commit	graph	that	is	difficult
to	read,	thus	reducing	the	usefulness	of	the	structural	merge	feature	itself.	In	this
context,	certain	workflows	can	easily	create	what	one	might	call	“spurious
merges,”	which	do	not	actually	correspond	to	such	merging	of	content.	Having
lots	of	these	clutters	up	the	commit	graph,	and	makes	it	difficult	to	discern	the
real	history	of	a	project.

As	an	example:	suppose	you	and	a	colleague	are	coordinating	your	individual
repositories	via	push/pull	with	a	shared	central	one.	You	commit	a	change	to
your	repository,	while	he	commits	an	unrelated	change	on	the	same	branch.	The
changes	might	be	to	different	files,	or	even	to	the	same	file	but	such	that	they	do
not	require	manual	conflict	resolution.	If	he	pushes	first,	then	as	described
earlier,	your	subsequent	push	will	fail,	so	you	will	pull;	then	Git	will	do	a
successful	automatic	merge	(since	the	changes	were	independent),	and	this
becomes	part	of	the	repository	history	with	your	final	push.	But	if	you	think	of	a
merge	as	a	deliberate	step	to	signal	the	combination	of	conflicting	or
substantially	different	content,	then	you	don’t	really	want	this	merge.	The	telltale
sign	of	this	sort	of	spurious	merge	is	that	it’s	purely	an	artifact	of	timing;	if	the
order	of	events	had	instead	been:
1.	 You	commit	and	push.

2.	 He	pulls.

3.	 He	commits	and	pushes.

then	there	would	have	been	no	conflict,	and	no	merge.	This	observation	is	the
key	to	avoiding	such	merges	using	git pull	--rebase,	which	reorders	your
changes.	“Rebasing”	is	a	more	general	idea,	which	we	treat	in	Rebasing;	the
pull-with-rebase	option	is	a	special	case.	Briefly,	what	happens	is	this:	suppose
your	master	branch	diverged	from	its	upstream	several	commits	back.	For	each
divergent	commit	on	your	branch,	Git	constructs	a	patch	representing	the
changes	introduced	by	that	commit;	then	it	applies	these	in	order	starting	at	the
tip	of	the	upstream	tracking	branch	origin/master.	After	applying	each	patch,	Git
makes	a	new	commit	preserving	the	author	information	and	message	from	the
original	commit.	Finally,	it	resets	your	master	branch	to	point	to	the	last	of	these
commits.	The	effect	is	to	“replay”	your	work	on	top	of	the	upstream	branch	as
new	commits,	rather	than	affecting	a	merge	with	your	existing	.commits.

In	the	earlier	example,	git pull --rebase	would	produce	the	following
simple,	linear	history	instead	of	the	“merge	bubble”	previously	pictured,	with	its
extra	commit:

* 1e6f2cb2 the final word

* baa699bc not quite

* 3a9ee5f3 in principio

A	push	now	will	succeed	without	further	work	(and	without	merging),	because
you’ve	simply	added	to	the	upstream	branch;	it	will	be	a	fast-forward	update	of
that	branch.	Note	that	the	commit	ID	for	“the	final	word”	has	changed;	that’s
because	it’s	a	new	commit	made	by	replaying	the	changes	of	the	original	on	top
of	commit	baa699bc.

If	git pull	starts	a	merge	when	you	know	there’s	no	need	for	it,	you	can
always	cancel	it	by	giving	an	empty	commit	message,	or	with	git merge --
abort	if	the	merge	failed	leaving	you	in	conflict-resolution	mode.	If	you
complete	such	a	merge	and	want	to	undo	it,	use	git reset HEAD^	to	move	your
branch	back	again,	discarding	the	merge	commit.	You	can	then	use	git pull	--
rebase	instead.	You	can	set	a	specific	branch	to	automatically	use	--rebase
when	pulling:

$ git config branch.branch-name.rebase yes

and	the	configuration	variable	branch.autosetuprebase	controls	how	this	is
set	for	new	branches:

never
Default:	do	not	set	rebase

remote
Set	for	branches	tracking	remote	branches

local
Set	for	branches	tracking	other	branches	in	the	same	repository

always
Set	for	all	tracking	branches

Notes
1.	 If	you	know	it’s	the	right	thing	to	do,	you	can	perform	destructive,	non–

fast-forward	updates	with	the	--force	option	to	either	push	or	pull,
although	in	the	case	of	push	the	remote	must	be	configured	to	allow	it;
repositories	created	with	git init --shared	have	this	disabled	by	setting
receive.denyNonFastForwards.

Beware!	It’s	one	thing	to	do	a	forced	pull;	you’re	just	discarding	some	of
your	own	history.	A	forced	push,	on	the	other	hand,	causes	grief	for	other
people,	who	will	be	unable	to	pull	cleanly	as	a	result.	For	a	repository
shared	by	a	small	set	of	people	in	close	communication,	or	that	is	a	read-
only	reference	for	most,	this	may	be	occasionally	appropriate.	For	anything
shared	by	a	wide	audience,	though,	you	really	don’t	want	to	do	this.

2.	 The	command	git remote show remote	gives	a	useful	summary	of	the
status	of	your	repository	in	relation	to	a	remote:

$ git remote show origin

* remote origin

 Fetch URL: git://tamias.org/chipmunks.git

 Push URL: git://tamias.org/chipmunks.git

 HEAD branch: master

 Remote branches:

 alvin tracked

 theodore tracked

 simon tracked

 Local branches configured for 'git pull':

 alvin merges with remote alvin

 simon merges with remote simon

 Local refs configured for 'git push':

 alvin pushes to alvin (up to date)

 simon pushes to simon (local out of date)

Note	that	unlike	most	informational	commands,	this	actually	examines	the
remote	repository,	so	it	will	run	ssh	or	otherwise	use	the	network	if
necessary.	You	can	use	the	-n	switch	to	avoid	this;	Git	will	skip	those
operations	that	require	contacting	the	remote	and	note	them	as	such	in	the
output.

3.	 git branch -vv	gives	a	more	compact	summary	without	contacting	the
remote	(and	thus	reflects	the	state	as	of	the	last	fetch	or	pull;	remember	that
the	remote	might	have	changed	in	the	meantime).	The	following	shows	a
purely	local	master	branch,	plus	two	branches	tracking	remote	ones:	alvin
is	up	to	date	with	respect	to	its	upstream,	whereas	the	current	local	branch,
simon,	has	moved	three	commits	forward:

$ git branch -vv

 alvin 7e55cfe3 [origin/alvin] I love chestnuts.

 master a675f734 Chipmunks are the real nuts.

* simon 9b0e3dc5 [origin/simon: ahead 3] Walnuts!

(This	state	is	not	one	resulting	from	previous	examples.)

4.	 There	appears	to	be	a	lot	of	pointless	redundancy	in	many	of	these
messages;	things	like	“alvin	pushes	to	alvin,”	or	updates	indicating
“master→master.”	The	reason	is	that	the	default,	common	situation	is	for
corresponding	local	and	remote	branches	to	have	matching	names,	but	this
need	not	be	the	case;	for	more	complex	situations,	you	can	have	arbitrary
associations,	and	the	Git	messages	take	this	into	account.	For	example,	if
you	have	a	repository	with	two	remotes	each	having	a	master	branch,	your
local	tracking	branches	can’t	both	be	named	master	as	well.	You	could

proceed	this	way:

$ git remote add foo git://foo.com/foo.git

$ git remote add bar http://bar.com/bar.git

$ git fetch --all

Fetching foo

remote: Counting objects: 6, done.

remote: Compressing objects: 100% (2/2), done.

remote: Total 6 (delta 0), reused 0 (delta 0)

Unpacking objects: 100% (6/6), done.

From foo git://foo.com/foo.git

* [new branch] master -> foo/master

Fetching bar

remote: Counting objects: 5, done.

remote: Total 3 (delta 0), reused 0 (delta 0)

Unpacking objects: 100% (3/3), done.

From http://bar.com/bar.git

* [new branch] master -> bar/master

$ git checkout -b foo-master --track foo/master

Branch foo-master set up to track remote branch

master from foo.

Switched to a new branch 'foo-master'

$ git checkout -b bar-master --track bar/master

Branch bar-master set up to track remote branch

master from bar.

Switched to a new branch 'bar-master'

$ git branch -vv

* bar-master f1ace62e [bar/master] bars are boring

 foo-master 11e4af82 [foo/master] foosball is fab

...

These	messages	from	git clone:

 * [new branch] master -> foo/master

 ...

 * [new branch] master -> bar/master

 ...

might	be	a	little	confusing;	they	indicate	that	the	remote	branch	master	in
each	repository	is	now	being	tracked	by	local	branches	foo/master	and
bar/master,	respectively	(not	that	it	somehow	overwrote	a	local	master
branch,	which	might	or	might	not	exist	and	is	not	relevant	here).

Access	Control
In	a	word	(or	three):	there	is	none.

It	is	important	to	understand	that	Git	by	itself	does	not	provide	any	sort	of
authentication	or	comprehensive	access	control	when	accessing	a	remote
repository.	Git	has	no	internal	notion	of	“user”	or	“account,”	and	although	some
specific	actions	may	be	forbidden	by	configuration	(e.g.,	non–fast-forward
updates),	generally	you	can	do	whatever	is	possible	with	the	operating-system
level	access	controls	in	place.	For	example,	remote	repositories	are	often
accessed	via	SSH.	This	usually	means	that	you	need	to	be	able	to	log	into	an
account	on	the	remote	machine	(which	account	may	be	shared	with	other
people);	you	can	clone	and	pull	from	the	repository	if	that	account	has	read
access	to	the	repository	files	on	that	machine,	and	you	can	push	to	the	repository
if	that	account	has	write	access.	If	you’re	using	HTTP	for	access	instead,	then
similar	comments	apply	to	the	configuration	of	the	web	server	and	the	account
under	which	it	accesses	the	repository.	That’s	it.	There	is	no	way	within	Git	to
limit	access	to	particular	users	according	to	more	fine-grained	notions,	such	as
granting	read-only	access	to	one	branch,	commit	access	to	another,	and	no	access
to	a	third.	There	are,	however,	third-party	tools	that	add	such	features;	Gitolite,
Gitorious,	and	Gitosis	are	popular	ones.

Chapter	7.	Merging

Merging	is	the	process	of	combining	the	recent	changes	from	several	branches
into	a	single	new	commit	that	is	on	all	those	branches.	Most	often	there	are	only
two	branches	involved,	but	in	fact,	there	can	be	any	number;	if	there	are	more
than	two,	it	is	called	an	“octopus	merge.”	When	there	are	only	two	branches,	the
current	branch	is	called	“our”	side	of	the	merge,	while	the	other	branch	is	called
“their”	side.	Since	the	octopus	merge	is	unusual,	we	will	generally	assume	a
two-branch	merge	in	this	discussion.

We	described	how	Git	may	start	a	merge	for	you	as	part	of	git pull	(see
Pulling),	but	you	can	also	perform	merges	explicitly.	Here’s	a	typical	scenario:
you’re	working	on	a	software	project,	and	you	have	an	idea	for	a	new	feature,
but	you	don’t	want	your	experimental	work	on	that	feature	to	disturb	your	main
development.	So	you	create	a	branch	named	feature	to	contain	the	work:

$ git checkout -b feature

Switched to a new branch 'feature'

(explore brilliant idea...)

When	you	need	to	go	back	to	work	on	the	main	part	of	your	project,	you	commit
your	work	on	the	feature	branch	and	switch	back	to	master	(or	whichever	branch
you	need	to	work	on):

$ git commit -am "must save brilliant thoughts"

[feature c6dbf36e]

 0 files changed

 create mode 100644 effulgent.c

 create mode 100644 epiphany.h

$ git checkout master

Switched to branch 'master'

(perform mundane chores...)

You	continue	like	this	for	some	time.	Eventually,	if	you	decide	you	don’t	like
your	feature	idea,	you	can	discard	the	work	by	deleting	the	branch	with	git

branch -D feature.	If	you	decide	to	keep	it,	however,	at	some	point	you’ll
want	to	incorporate	it	into	the	main	project	code,	and	you	do	this	with	a	merge:

$ git checkout master

Switched to branch 'master'

$ git merge feature

Auto-merging main.c

Merge made by the 'recursive' strategy.

 effulgent.c | 452 ++++++++++++++++++++++++

 epiphany.h | 45 ++++++++++

 main.c | 18 ++--

 3 files changed, 507 insertions(+), 9 deletion(-)

 create mode 100644 effulgent.c

 create mode 100644 epiphany.h

WARNING

It’s	best	to	have	all	your	work	committed	before	running	git merge;	that	is,	git status
should	show	no	outstanding	changes	or	untracked	files.	Backing	out	of	a	merge	to	your	initial
state	may	prove	difficult	otherwise.	You	can	use	git stash	as	a	quick	way	to	save	working
changes	and	restore	them	later	(see	git	stash).

This	merge	was	simple.	You	had	added	the	files	effulgent.c	and	epiphany.h	on
the	feature	branch,	and	they	did	not	exist	on	master,	so	Git	just	added	them.	You
had	made	minor	changes	to	main.c	on	both	branches,	but	those	changes	did	not
conflict,	so	Git	combined	them	automatically	and	committed	its	merged	version.
The	ASCII	graph	with	filenames	on	the	left	is	called	a	“diffstat”;	it	is	a	summary
of	the	changes	made	by	this	commit.	The	lines	of	plus	and	minus	signs	represent
the	relative	number	of	line	additions	(“insertions”)	and	deletions	made	in	the
corresponding	file.

Both	aspects	of	merging	have	occurred	here:	content	and	structure.	First,	Git
combined	the	content	of	both	branches	by	adding	and	merging	changes	to	files;
then,	it	recorded	the	fact	of	the	merge	structurally	by	creating	a	merge	commit
tying	both	branches	together	in	the	commit	graph.	This	indicates	in	the	history
those	commits	whose	contents	were	combined	to	produce	the	new	one,	by
making	them	its	parents.	A	“merge	commit”	is	defined	simply	as	a	commit
having	more	than	one	parent.

You	can	continue	this	process	as	long	as	you	like,	working	on	the	feature	branch

separately	and	periodically	merging	its	work	into	master.	If	you	do,	you	will
probably	also	need	to	merge	the	other	way	as	well,	updating	the	feature	branch
with	the	latest	work	on	master,	so	that	you’re	not	working	on	outdated	code;	for
this,	just	do	the	reverse:	switch	to	feature	and	run	git merge master.

When	your	new	feature	is	fully	incorporated	into	the	main	development,	and	you
no	longer	need	to	work	on	it	separately,	you	can	delete	the	feature	branch	with
git branch -d feature;	as	discussed	in	Deleting	a	Branch,	Git	will	complain
if	you	haven’t	fully	merged	feature	into	master,	to	prevent	you	from	accidentally
losing	work.	Deleting	feature	doesn’t	delete	any	of	its	content	or	history;	it	just
removes	the	name	“feature”	as	a	reference	point,	a	place	at	which	you	intend	to
add	independent	commits	later	on—since	you	no	longer	need	it.	You	can	reuse
“feature”	as	a	branch	name	in	the	future	if	you	want,	and	there	will	be	no
collision	with	the	earlier	usage;	in	fact,	aside	from	possibly	in	commit	messages
or	reflogs,	once	you	delete	a	branch,	there	is	no	record	in	the	repository	proper
that	it	ever	existed!	Branch	names	serve	to	indicate	what	parts	of	the	object
database	are	still	of	interest,	and	where	development	is	still	occurring;	if	a
branch’s	content	is	merged	into	other	branches,	and	you	no	longer	need	a	line	of
development	with	that	name,	then	you	can	just	delete	it,	and	reuse	the	name	later
for	something	else	if	you	like.	Similarly,	looking	back	in	the	commit	graph,	it	is
not	possible	to	know	on	which	branch	name	a	particular	commit	was	made;	even
in	a	linear	history,	the	current	branch	name	might	have	been	changed	at	some
point	in	the	past.	It	might	be	interesting	or	useful	to	know	this	in	some	situations,
but	Git	just	doesn’t	keep	this	information.	Git	branches	are	ephemeral	in	a	sense,
just	tools	for	building	the	commit	graph,	which	is	what	matters.

Merge	Conflicts
The	previous	merge	went	smoothly,	but	what	if	you	had	made	changes	in	the	two
branches	that	Git	could	not	combine	on	its	own?	These	are	called	“merge
conflicts,”	and	Git	would	stop	and	ask	you	to	resolve	them	before	committing.
This	process	can	range	from	simple	to	very	complex,	depending	on	the	content
and	changes	involved;	fortunately,	there	are	tools	available	to	help,	both	in	Git
itself	and	with	which	Git	can	work.	Let’s	walk	through	a	simple	example.
Suppose	you	have	a	file	moebius	with	the	following	contents:

hello

doctor

name

continue

yesterday

tomorrow

and	you	make	commits	on	branches	chandra	and	floyd	changing	it	thus:

chandra floyd

hello hello

doctor doctor

Jupiter Europa

dolphin monoliths

yesterday yesterday

tomorrow tomorrow

You	have	changed	the	same	two	lines	on	each	side	in	different	ways,	and	Git’s
line-oriented	merge	approach	will	not	attempt	to	guess	at	your	intent	or	combine
the	lines	(e.g.,	form	a	single	line	dolphin monoliths,	interesting	as	those	might
be);	it	will	signal	a	merge	conflict:

$ git checkout chandra

Switched to branch 'chandra'

$ git merge floyd

Auto-merging moebius

CONFLICT (content): Merge conflict in moebius

Automatic merge failed; fix conflicts and then commit

the result.

The	phrase	CONFLICT (content)	indicates	that	the	conflict	is	due	to
irreconcilable	content	changes	in	this	file.	Git	might	indicate	other	reasons	as
well,	such	as	an	add/add	conflict,	in	which	the	same	filename	is	added	to	both
branches	but	with	different	contents.

TIP

If	you	start	a	merge	and	then	want	to	cancel	it—perhaps	you	weren’t	expecting	so	many

conflicts	and	you	don’t	have	time	to	deal	with	them	now—just	use	git merge --abort.

To	get	an	overview	of	the	merge	state,	use	git status.	Any	changes	Git
resolved	on	its	own	will	be	shown	as	already	staged	for	commit,	and	there	is	a
separate	section	at	the	end	for	merge	conflicts:

$ git status

...

Unmerged paths:

(use "git add <file>..." to mark resolution)

#

both modified: moebius

“Unmerged	paths”	are	files	with	conflicts	Git	could	not	resolve.	To	find	out	what
went	wrong	in	detail,	use	git diff.	This	command	not	only	shows	the
differences	between	various	combinations	of	working	tree,	index,	and	commits;
it	also	has	a	special	mode	for	helping	with	merge	conflicts:

$ git diff

diff --cc moebius

index 1fcbe134,08dbe186..00000000

--- a/moebius

+++ b/moebius

@@@ -1,6 -1,6 +1,11 @@@

 hello

 doctor

++<<<<<<< ours

 +Jupiter

 +dolphin

++=======

+ Europa

+ monoliths

++>>>>>>> theirs

 yesterday

 tomorrow

This	display	shows	the	alternative	versions	of	the	section	in	conflict,	separated
by	=======	and	marked	with	the	corresponding	branch:	ours	(the	current
branch)	and	theirs	(in	this	case	floyd,	the	branch	we	are	merging	into	ours).	As
usual,	git diff	shows	differences	between	the	working	tree	and	the	index,

which	in	this	case	are	the	conflicts	yet	to	be	resolved;	changes	already	made	and
staged	are	not	shown.	You	can	use	git diff	--staged	to	see	those;	add	--stat
for	an	overview.	You’ll	find	that	Git	has	updated	the	working	file	with	similar
markup:

hello

doctor

<<<<<<< ours

Jupiter

dolphin

=======

Europa

monoliths

>>>>>>> theirs

yesterday

tomorrow

Once	you’ve	edited	the	file	to	resolve	the	conflict,	use	git add	to	stage	your
fixed	version	for	commit	and	remove	it	from	the	list	of	conflicted	paths	(if	the
resolution	is	actually	to	delete	the	file,	use	git rm).	Once	you’ve	addressed	all
the	conflicts	and	git status	no	longer	reports	any	unmerged	paths,	you	can	use
git commit	to	complete	the	merge.	Git	will	present	a	commit	message
containing	details	about	this	merge	including	its	branches	and	conflicts,	which
you	can	edit	as	you	see	fit;	in	this	case:

Merge branch 'floyd' into chandra

Conflicts:

 moebius

and	you	can	see	you’ve	created	a	“merge	commit”	having	more	than	one	parent:

$ git log --graph --oneline --decorate

* aeba9d85 (HEAD, chandra) Merge branch 'floyd' in…

|\

| * a5374035 (floyd) back in black

* | e355785d thanks for all the fish!

|/

* 50769fc9 star child

The	other	branch,	floyd,	has	stayed	where	it	was,	while	the	current	branch,
chandra,	has	advanced	one	commit	from	e355785d	to	aeba9d85,	and	that	last
commit	unifies	the	two	branches.	A	new	commit	on	floyd	will	cause	them	to
diverge	again,	and	you	can	merge	again	in	the	future	if	you	need	to	(in	either
direction).	Note	that	at	this	point,	a	simple	git log	will	show	commits	from
both	branches,	not	just	those	made	while	on	chandra:

$ git log --oneline --decorate

aeba9d85 (HEAD, chandra) Merge branch 'floyd' into ch…

a5374035 (floyd) back in black

e355785d thanks for all the fish!

50769fc9 star child

You	might	have	expected	to	see	only	commits	aeba9d85,	e355785d,	and
50769fc9.	This	presentation	may	seem	odd	at	first,	but	it’s	just	a	different	way	of
looking	at	the	notion	of	“branch.”	A	Git	branch	is	defined	as	the	set	of	all
commits	reachable	in	the	commit	graph	from	the	branch	tip;	think	of	it	as	all
commits	that	contributed	content	to	the	tip	commit	(which,	after	a	merge,
includes	all	commits	prior	to	that	one	on	both	branches).

TIP

In	simple	cases,	you	may	get	what	you	think	of	as	the	history	of	“this	branch”	with	git log -
-first-parent,	which	just	follows	the	first	parent	of	merge	commits	rather	than	all	of	them.
However,	this	isn’t	guaranteed,	and	in	more	complex	histories	it	won’t	mean	much.	Since	Git
allows	nonlinear	history,	a	simple	list	of	commits	is	often	not	very	useful,	and	you	need
visualization	tools	to	help	you	interpret	it	(see	Visual	Tools).

Resolving	Merge	Conflicts
Git	doesn’t	have	built-in	tools	to	interactively	address	merge	conflicts	directly;
that’s	what	external	merge	tools	are	for,	which	we’ll	consider	shortly	in	Merge
Tools.	However,	here	are	some	tips	for	use	in	simple	cases.

1.	 git log -p --merge	shows	all	commits	containing	changes	relevant	to
any	unmerged	files,	on	either	branch,	together	with	their	diffs.	This	can
help	you	identify	the	changes	in	the	history	that	led	to	the	conflicts.

2.	 If	you	want	to	discard	all	the	changes	from	one	side	of	the	merge,	use	git

checkout --{ours,theirs} file	to	update	the	working	file	with	the
copy	from	the	current	or	other	branch,	followed	by	git add file	to	stage
the	change	and	mark	the	conflict	as	resolved.

3.	 Having	done	that,	if	you	would	like	to	apply	some	of	the	changes	from	the
opposite	side,	use	git checkout -p branch file.	This	starts	an
interactive	loop	that	allows	you	to	selectively	apply	or	edit	differing
sections	(see	the	“patch”	item	in	the	“Interactive	Mode”	section	of	git-
add(1)	for	details).

In	our	example,	if	you	decided	to	keep	your	version	as	a	default,	but	selectively
apply	changes	from	the	other	branch,	you	could	do:

$ git checkout --ours moebius

$ git add moebius

$ git checkout -p floyd moebius

diff --git b/moebius a/moebius

index 1fcbe134..08dbe186 100644

--- b/moebius

+++ a/moebius

@@ -1,6 +1,6 @@

hello

doctor

-Jupiter

-dolphin

+Europa

+monoliths

yesterday

tomorrow

Apply this hunk to index and worktree [y,n,q,a,d,/,e,…

y - apply this hunk to index and worktree

n - do not apply this hunk to index and worktree

q - quit; do not apply this hunk nor any of the remai…

a - apply this hunk and all later hunks in the file

...

$ git add moebius

Notes
1.	 If	the	current	branch	is	already	contained	in	the	other	(that	is,	HEAD	is	an

ancestor	of	the	other	branch	tip),	then	git merge	will	just	move	the
current	branch	up	to	meet	the	other	in	a	“fast-forward”	update,	and	not

make	a	new	commit	at	all.	You	can	force	a	merge	commit	anyway	with	git
merge --no-ff	(“no	fast-forward”),	if	you	have	some	reason	to	do	so.

2.	 If	the	converse	is	true,	and	the	other	branch	is	already	contained	in	this
one,	then	Git	will	simply	say	that	the	current	branch	is	“already	up-to-
date,”	and	do	nothing.	The	goal	of	the	merge	is	to	incorporate	into	the
current	branch	any	changes	on	the	other	branch	since	the	two	diverged—
but	they	haven’t	diverged.

3.	 If	you	want	to	use	Git’s	content-merging	and	conflict-resolution	machinery,
but	do	not	want	to	create	a	merge	commit,	use	git merge --squash.	This
operates	like	a	normal	merge	with	regard	to	content,	but	the	commit	it
creates	is	just	on	the	current	branch	(that	is,	has	a	single	parent	and	does
not	connect	to	the	other	branch	in	the	commit	graph).

4.	 You	can	use	git merge -m	to	specify	a	commit	message	just	as	with	git
commit,	although	remember	that	Git	provides	useful	information	in	its
supplied	message,	which	you	may	prefer	to	start	with	and	edit	instead
(which	happens	by	default).

5.	 Use	git merge --no-commit	to	stop	Git	from	committing	when	an
automatic	merge	succeeds,	in	case	you	want	to	have	a	look	first.	This	isn’t
strictly	necessary,	since	you	could	always	abort	the	commit	by	giving	a
blank	commit	message,	or	make	any	changes	you	want	afterward	and	use
git commit --amend.

6.	 Git	records	that	a	merge	is	in	progress	by	setting	the	ref	MERGE_HEAD	to
point	to	the	other	branch;	this	is	how	it	knows	to	make	a	merge	commit	(as
opposed	to	a	simple	commit	on	the	current	branch)	even	when	there	are
intervening	commands	while	you	resolve	conflicts.

Details	on	Merging
When	merging,	Git	considers	the	changes	that	have	occurred	on	the	branches	in
question	since	they	last	diverged.	In	the	previous	example,	the	branches	chandra
and	floyd	last	diverged	at	commit	50769fc9,	so	the	changes	to	be	reconciled
were	those	in	commits	e355785d	and	a5374035.	These	branches	might	have

diverged	and	been	merged	several	times	previously,	but	you	will	only	be	asked
to	deal	with	new	changes	since	that	last	happened.	Some	other	version	control
systems	do	not	have	this	feature,	so	that	merging	branches	repeatedly	is	a
problem:	you	end	up	resolving	the	same	conflicts	over	and	over.

More	precisely,	when	merging	several	branches,	Git	seeks	a	“merge	base”:	a
recent	common	ancestor	of	all	the	branch	tips,	to	use	as	a	reference	point	for
arbitrating	changes.	Although	in	complicated	situations	there	might	be	multiple
possibilities	for	a	merge	base	(see	git-merge-base(1)),	in	the	common	case	of	our
example,	there	is	a	single	obvious	choice,	which	Git	finds	automatically.	Since
our	merge	now	involves	three	commits—two	branch	tips	and	the	merge	base—it
is	called	a	“three-way	merge.”

Recall	that	git status	showed	our	conflicts,	the	“unmerged	paths.”	Where
does	it	keep	this	information?	There	are	conflict	markers	in	the	working	files,
but	it	would	be	slow	to	read	all	the	files	for	this	purpose,	and	in	any	case	that
wouldn’t	help	for	a	modify/delete	conflict.	The	answer	demonstrates	yet	again
the	usefulness	of	the	index.	When	there	is	a	merge	conflict	for	a	file,	Git	simply
stores	not	one	version	of	the	file	in	the	index,	but	three:	those	belonging	to	the
merge	base	and	to	the	current	and	“other”	branches,	numbered	1,	2,	and	3,
respectively.	The	number	is	called	the	“stage”	of	the	file	and	is	a	distinct
property	of	an	index	entry	along	with	the	filename,	mode	bits,	and	so	on.	In	fact,
there	is	a	third	stage,	0,	which	is	the	usual	state	of	an	entry	that	has	no	associated
merge	conflict.	We	can	see	this	using	git	ls-files,	which	shows	the	contents
of	the	index.	Prior	to	the	merge,	we	see:

$ git ls-files -s --abbrev

100644 1fcbe134 0 moebius

The	fields	here	are	the	mode	bits,	ID	of	the	blob	object	holding	the	file’s
contents,	the	stage	number,	and	the	filename.	After	running	git merge floyd
and	getting	a	conflict	for	this	file,	we	see	something	very	different	(using	-u
instead	of	-s	would	show	only	unmerged	paths;	here	we	have	only	one	file
anyway):

$ git ls-files -s --abbrev

100644 30b7cdab 1 moebius

100644 1fcbe134 2 moebius

100644 08dbe186 3 moebius

Note	that	the	ID	of	stage	2	matches	what	was	previously	stage	0	earlier,	since
stage	2	is	the	version	on	the	current	branch.	You	can	use	git cat-file	to	see
the	contents	of	the	different	stages,	here	the	stage	1	merge-base	version:

$ git cat-file -p 30b7cdab

hello

doctor

name

continue

yesterday

tomorrow

You	can	refer	to	a	specific	stage	of	a	file	with	the	syntax	:n:path;	so	git show
:1:moebius	is	an	easier	equivalent	for	this.

Git	records	the	three	commits	into	the	index	in	this	way	at	the	start	of	the	merge.
It	then	follows	a	set	of	simple	rules	to	quickly	resolve	the	easy	cases;	for
example:

If	all	three	stages	match,	reduce	to	a	single	stage	0.

If	stage	1	matches	stage	2,	then	reduce	to	a	single	stage	0	matching	stage	3
(or	vice	versa):	one	side	made	a	change	while	the	other	did	nothing.

If	stage	1	matches	stage	2,	but	there	is	no	stage	3,	then	remove	the	file:	we
made	no	change,	while	the	other	branch	deleted	it,	so	accept	the	other
branch’s	deletion.

If	stages	1	and	2	differ,	and	there	is	no	stage	3,	then	report	a	“modify/delete”
conflict:	we	changed	the	file,	while	the	other	branch	deleted	it;	the	user	must
decide	what	to	do.

…and	so	forth.	Note	that	for	matching,	Git	doesn’t	need	to	fetch	the	actual	files;
it	can	just	compare	the	blob	object	IDs	already	in	the	index,	since	they	are
hashes	of	the	files’	contents.	This	is	very	fast;	content-based	addressing	wins
again.	You	can	read	about	this	process	in	more	detail	in	git-read-tree(1).	Any
files	that	can’t	be	easily	resolved	this	way	must	then	actually	be	examined	to
attempt	merging	their	contents.

Merge	Tools
Merging	can	be	a	complex	job,	with	you	staring	at	scores	of	conflicting	sections
of	source	code	changes	from	yourself	and	other	people,	and	trying	to	combine
them	into	a	single	working	whole.	There	are	tools	available	that	go	far	beyond
the	simple	text	output	of	git diff	in	helping	you	to	visualize	and	resolve	such
conflicts.	Git	integrates	smoothly	with	these	external	“merge	tools,”	to	help	you
get	the	job	done	more	easily.	Git	supports	over	a	dozen	free	and	commercial
merge	tools	out	of	the	box,	including	araxis,	emerge,	opendiff,	kdiff3,	and
gvimdiff.	It	also	defines	an	interface	with	which	you	can	use	most	any	such	tool,
usually	requiring	only	a	simple	wrapper	script	to	connect	it	to	Git.

We	can’t	delve	into	the	details	of	the	individual	merge	tools;	many	of	them	are
complex	programs	in	their	own	right	and	would	require	another	small	book	each
to	describe.	Here,	we’ll	just	describe	how	they	work	with	Git	generally.

The	driver	for	using	a	merge	tool	is	git mergetool.	Once	invoked,	this
command	runs	over	all	the	files	with	merge	conflicts,	asking	for	each	if	you	want
to	invoke	the	selected	merge	tool	on	the	file.	The	default	merge	tool	is	opendiff,
but	you	can	set	a	different	default	with	the	merge.tool	Git	configuration
variable.	The	tool	will	usually	present	you	with	a	view	of	the	“ours”	and	“theirs”
versions	of	the	file,	along	with	the	merge	base,	and	provide	ways	to	move	from
one	change	or	conflict	to	the	next,	select	which	side’s	change	to	use	(or	combine
them),	etc.	When	you	quit	the	merge	tool	indicating	success,	Git	will	add	your
merged	version	to	the	index	(thus	marking	this	conflict	as	resolved),	and	go	on	to
the	next	unmerged	file.

Notes
The	-y	switch	to	git mergetool	tells	it	to	run	the	tool	on	all	unmerged	files,
without	pausing	to	prompt	yes	or	no	for	each	one.

git mergetool	leaves	a	backup	foo.orig	for	each	file	foo	it	processes,	since
you	might	have	modified	it	yourself	before	running	the	merge	tool.	You	can
set	mergetool.keepBackup no	to	turn	off	this	feature.	Actually,	Git	still
makes	the	backup;	it	just	deletes	it	when	the	merge	tool	exits	successfully,	so
that	the	backup	is	still	there	in	case	the	tool	were	to	crash.

If	a	merge	tool	exits	unexpectedly	or	doesn’t	work	properly,	you	may	see	files
like	these	left	behind	(for	the	file	main.c):

main.c.BACKUP.62981.c

main.c.BASE.62981.c

main.c.LOCAL.62981.c

main.c.REMOTE.62981.c

These	are	the	temporary	files	that	Git	uses	to	pass	the	various	file	versions	to
the	merge	tool.

Custom	Merge	Tools
If	you	want	to	use	a	merge	tool	not	directly	supported	by	Git,	it	need	only	obey
some	simple	conventions;	usually,	you’ll	write	a	glue	script	to	accommodate
them.	Git	passes	four	filenames	to	the	tool	as	environment	variables:

LOCAL
The	version	from	the	current	branch

REMOTE
The	version	from	the	other	branch

BASE
The	version	from	the	merge	base	(common	ancestor)

MERGED
File	to	which	the	merged	version	should	be	written

The	tool	should	exit	with	a	code	of	zero	to	indicate	that	the	user	is	happy	with
the	merged	version,	saved	to	the	filename	in	the	MERGED	environment	variable.	A
nonzero	exit	code	means	that	Git	should	ignore	that	file	and	not	mark	this
conflict	resolved.	To	define	a	new	Git	merge	tool	named	“foo”	with	your	own
program	named	newtool:

[mergetool "foo"]

 cmd = newtool $LOCAL $REMOTE $MERGED $BASE

 trustExitCode = true

This	shows	the	files	being	passed	on	the	command	line	to	newtool;	if	your
program	reads	the	environment	variables	itself,	then	of	course	that’s	not
required.	The	trustExitCode	setting	means	that	Git	will	interpret	the	tool’s	exit
code	as	previously	described;	if	this	setting	is	false,	Git	will	prompt	the	user	for
what	to	do	anyway.

Merge	Strategies
Git	has	a	number	of	approaches	it	can	take	to	automatically	merge	files	that	have
been	changed	by	both	sides	of	a	merge;	that	is	to	say,	exactly	what	it	does	in
analyzing	text	to	determine	the	boundaries	of	changed	blocks,	when	blocks	have
been	moved,	when	changes	can	be	safely	merged,	and	when	they	should	be
punted	to	the	user.	These	approaches	are	called	“merge	strategies,”	and	each	may
in	turn	have	various	options;	Git	can	even	be	extended	with	new	strategies	by
writing	custom	“merge	drivers,”	without	having	to	touch	Git	proper.

The	built-in	merge	strategies	are	described	in	git-merge(1).	The	many	options
are	quite	technical	and	involved,	and	Git’s	default	choice	of	strategy	is	usually
sufficient;	we	will	not	cover	them	in	depth	here.	However,	here	are	a	few	tips
involving	merge	strategies	that	are	generally	useful:

git merge -s ours
The	ours	strategy	is	simple:	it	discards	all	changes	from	the	other	branch.
This	leaves	the	content	on	your	branch	unchanged,	and	when	you	next	merge
from	the	other	branch,	Git	will	only	consider	changes	made	from	this	point
forward.	You	might	use	this	to	retain	the	history	of	a	branch,	without
incorporating	its	effects.	(This	strategy	works	with	more	than	two	branches
as	well.)

git merge -s recursive -X ours
This	is	the	ours	option	to	the	recursive	strategy,	not	to	be	confused	with
the	ours	strategy.	The	recursive	strategy	is	often	the	default,	and	so	you
might	not	have	to	use	-s,	but	we’ll	be	explicit	here.	This	option	directs	Git	to
resolve	conflicting	changes	in	favor	of	the	current	branch.	This	is	different
from	the	ours	strategy,	in	that	nonconflicting	changes	can	still	be	resolved	in

favor	of	either	branch.	You	can	use	-X theirs	as	well,	to	resolve	in	favor	of
the	other	branch	instead.

ignore-space-change,	ignore-all-space,	ignore-space-at-eol
These	options	to	the	recursive	strategy	automatically	resolve	conflicts
differing	only	in	certain	types	of	whitespace;	see	git-merge(1)	for	details.

merge.verbosity
This	configuration	variable	(or	the	GIT_MERGE_VERBOSITY	environment
variable,	which	takes	precedence),	holds	a	natural	number	indicating	the
level	of	information	printed	by	the	recursive	strategy.	Zero	prints	only	a
final	error	message	on	conflict,	2	is	the	default,	and	5	and	above	show
debugging	information.

The	“octopus”	strategy
The	octopus	strategy	can	merge	any	number	of	branches,	but	only	if	all
changes	can	be	resolved	automatically.	If	not,	the	strategy	will	abort	in	the
middle	of	the	merge	attempt,	possibly	leaving	your	index	and	working	tree	in
a	not	terribly	meaningful	state.	Unlike	when	merging	two	branches,	git
merge --abort	doesn’t	work	in	this	case	(it	says	no	merge	is	in	progress);
this	may	be	a	limitation	that	will	be	addressed	in	future	versions	of	Git.	You
can	use	git reset	to	discard	the	index	changes,	adding	--hard	to	reset	the
working	tree	as	well,	if	you	had	no	uncommitted	changes	to	lose.	“Octopus”
is	the	default	strategy	when	merging	more	than	two	branches,	e.g.,	git
merge bert ernie oscar.

Why	the	Octopus?
An	octopus	merge	is	generally	used	to	tie	together	several	topic	branches	with
the	master	branch	in	preparation	for	a	new	release	of	a	project,	bringing	in	all
their	separate	contributions.	The	individual	branches	should	already	have	been
reconciled	with	the	master	and	have	no	conflicts	amongst	them,	or	else	as
mentioned,	the	octopus	merge	will	not	work.	The	octopus	merge	does	not	have
any	inherent	advantage	over	simply	merging	all	the	topic	branches	into	the
master	pairwise	and	reconciling	the	conflicts	there;	it	accomplishes	the	same

goal	and	incorporates	the	same	history.	However,	with	a	large	number	of
branches,	it	can	make	for	a	cleaner	and	more	easily	understood	commit	graph,
and	so	some	people	prefer	it.	See	Figure	7-1.

Figure	7-1.	Pairwise	and	octopus	merges

Reusing	Previous	Merge	Decisions
Git	can	remember	merge	conflict	resolutions	you	made	in	the	past,	and	reuse
them	automatically	if	you	run	into	similar	conflicts	later.	This	feature	goes	by	the
name	git rerere,	for	“reuse	recorded	resolution.”	This	is	useful	if	you’re
working	on	a	particularly	difficult	merge.	You	may	abort	a	merge	and	retry	it	in
various	ways,	but	having	resolved	some	conflicts	in	the	meantime,	this	feature
can	remember	and	reapply	those	decisions.	It	can	also	be	helpful	if	you’re
rewriting	repository	history,	or	in	maintaining	branches	on	which	you	end	up
resolving	the	same	conflicts	repeatedly	until	the	branch’s	content	can	finally	be
merged	appropriately.

Setting	rerere.enabled	in	a	repository	turns	on	the	feature,	which	is	then
automatically	used	by	both	git merge	and	git	rebase.	Since	this	is	an
advanced	feature,	we	just	note	its	existence	here	and	refer	the	reader	to	git-
rerere(1)	for	details.

Chapter	8.	Naming	Commits

Git	has	a	variety	of	ways	to	refer	to	(or	name,	or	“spell”)	Git	objects,	usually
commits,	either	individually	or	as	a	set,	by	following	the	commit	graph	or
matching	some	criteria.	You	can	find	further	detail	on	the	conventions	described
next	in	gitrevisions(7).

The	command	git rev-parse	is	useful	for	checking	your	understanding:	it	will
take	a	name	in	the	various	syntaxes	presented	here	and	translate	it	to	an	object
ID,	so	you	can	make	sure	it	refers	to	the	object	you	expected.	For	names	that
represent	sets	of	commits,	git rev-list	will	show	the	resulting	set.

Naming	Individual	Commits

Commit	ID

The	full	SHA-1	object	ID
For	example,	2ee20b94203f22cc432d02cd5adb5ba610e6088f.

An	abbreviated	object	ID
A	prefix	of	an	object’s	full	ID	unique	to	your	repository.	So	2ee20b94	could
name	the	same	object	as	before,	if	no	other	object	in	your	database	has	an	ID
beginning	with	those	digits	(if	there	were	a	conflict,	you	could	just	use	a	few
more	digits).

git describe
The	output	of	the	git describe	command,	which	names	commits	relative
to	a	tag;	for	example,	v1.7.12-146-g16d26b16	refers	to	commit	16d26b16,
which	is	146	commits	away	from	the	tag	v1.7.12.	As	output,	this	might	be
used	as	part	of	a	build	identifier,	where	it	suggests	to	the	reader	the	proximity
of	the	build	to	a	tag	with	a	presumably	helpful	name.	As	input	to	Git

however,	only	the	trailing	hex	digits	after	-g	are	meaningful,	and	are	used	as
an	abbreviated	commit	ID.

Ref	Name
A	simple	ref	points	directly	to	an	object	ID.	Git	follows	a	symbolic	ref	such	as
“master”	until	it	finds	a	simple	ref;	for	example,	HEAD	points	to	master	if	you
are	that	branch,	and	master	points	to	the	commit	at	the	branch	tip.	If	the	object	is
a	tag	rather	than	a	commit,	then	Git	follows	the	tag	(possibly	through
intermediate	tags)	until	it	reaches	a	commit.

There	are	several	rules	for	expanding	ref	names,	allowing	you	to	use	short	names
in	most	situations	rather	than	fully	qualified	names	such	as	refs/heads/master.
To	find	a	ref	named	foo,	Git	looks	for	the	following	in	order:

1.	 foo:	Normally,	these	are	refs	used	by	Git	internally,	such	as	HEAD,
MERGE_HEAD,	FETCH_HEAD,	and	so	on,	and	are	represented	as	files	directly
under	.git

2.	 refs/foo

3.	 refs/tags/foo:	The	namespace	for	tags

4.	 refs/heads/foo:	The	namespace	for	local	branches

5.	 refs/remotes/foo:	The	namespace	for	remotes,	though	this	would	not
ordinarily	itself	be	a	ref,	but	rather	a	directory	containing	the	remote’s	refs

6.	 refs/remotes/foo/HEAD:	The	default	branch	of	the	remote	“foo”

Briefly,	this	means	that	git checkout foo	will	check	out	a	tag	named	foo	if
there	is	one,	otherwise,	a	branch;	if	there	is	neither,	but	there	is	a	remote	named
foo,	then	it	will	check	out	the	default	branch	of	that	remote.

Names	Relative	to	a	Given	Commit
In	the	following,	rev	refers	to	any	“revision”:	an	object	referred	to	using	any	of
the	syntaxes	discussed	in	this	chapter.	These	rules	can	apply	multiple	times;	e.g.,

a	tag	name	tigger	is	a	rev,	thus	tigger^	is	also	a	rev,	as	is	tigger^^	(using	the
first	rule	that	follows):

rev^n

For	example,	master^2;	this	refers	to	the	nth	parent	of	a	commit,	numbered
starting	at	1.	Recall	from	The	Object	Store	that	a	commit	contains	a	list	of
zero	or	more	parent	commits,	referred	to	by	their	object	IDs;	commits	with
more	than	one	parent	are	produced	by	merging.	Special	cases:

rev^	=	rev^1

rev^0	=	rev	if	rev	is	a	commit.	If	rev	is	a	tag,	then	rev^0	is	the	commit
to	which	the	tag	refers,	possibly	through	a	chain	of	other	tags	(see
rev^{commit}	next).

In	a	linear	history,	rev^	is	the	previous	commit	to	rev,	and	rev^^	the
commit	two	steps	back.	Remember	though	that	in	the	presence	of	merges,
there	may	not	be	a	single	“previous	commit,”	and	these	expressions	may	not
do	what	you	expect;	for	example,	note	carefully	that,	in	Figure	8-1,	rev^^	≠
rev^2.

Figure	8-1.	rev^^	vs	rev^2

rev~n

For	example,	HEAD~3;	this	is	the	nth	ancestor	of	rev,	always	following	the
first	parent	commit.	Special	cases:

rev~	=	rev~1

rev~0	=	rev

Again,	be	careful:	HEAD~2	=	HEAD^1^1	=	HEAD^^,	but	these	are	not	the	same
as	HEAD^2.

Names	Relative	to	the	Reflog
Local	branch	names	usually	have	a	reflog:	a	log	of	commits	that	used	to	be	the
head	of	this	branch,	along	with	the	actions	that	changed	it	each	time:	commit,
cherry-pick,	reset,	and	so	on.	You	view	the	composite	log	with	git log -g,
which	follows	your	trail	from	one	branch	log	to	another	via	checkouts.	The
syntax	refname@{selector}	allows	you	to	name	a	single	commit	according	to
various	criteria	evaluated	against	your	reflog:

refname@{time/date}

The	commit	named	by	this	ref	at	the	given	point	in	time.	The	time	can	be
specified	in	a	very	flexible	format	that	does	not	appear	to	be	documented	in
the	man	pages,	but	that	includes	such	expressions	as:

now

yesterday

last week

6 months ago

two Saturdays past

Sat Sep 8 02:09:07 2012 -0400	(or	meaningful	subsets	of	this)

1966-12-06 04:33:00

Times	after	the	latest	commit	return	the	latest	commit,	and	similarly	times
previous	to	the	earliest	commit	return	the	earliest	commit.	You	can	use	dots
instead	of	spaces	to	avoid	having	to	quote	or	escape	spaces	to	the	shell,	to
ease	typing:	topic@{last.week}	instead	of	topic@{"last week"}	or
topic@{last\ week}.

refname@{n}

For	nonnegative	n,	this	is	the	nth	prior	value	of	refname	(zero	refers	to	the
current	value	and	is	a	synonym	for	refname).	Note	that	this	need	not	be	the
same	as	refname~n,	the	nth	prior	commit	on	the	branch!	For	example,	if	git
pull	performs	a	fast-forward	update	of	a	branch,	there	will	be	one	entry	in
the	reflog,	but	possibly	several	intervening	commits.	This	is	because	Git
added	those	commits	in	a	single	action;	your	branch	moved	from	the
previous	commit	to	the	last	of	the	new	ones	in	one	step,	and	your	branch	was
never	“at”	any	of	the	intermediate	ones	(you	never	had	them	checked	out).

You	can	omit	refname	to	refer	to	the	current	branch	(e.g.,	@{5}).

@{-n}
With	a	negative	number,	this	is	the	current	tip	of	the	nth	branch	checked	out
before	the	current	one.	For	example,	if	you’re	on	master	and	switch	to	foo
with	git checkout foo,	then	git checkout @{-1}	will	take	you	back	to
master.	Note	the	very	different	meanings	of	@{5}	and	@{-5}:	the	first	is	the
fifth	prior	position	of	the	current	branch,	while	the	latter	is	the	fifth	prior
branch	you	checked	out	(and	neither	of	them	is	HEAD~5	or	HEAD^5).	Also
note	the	word	“current”	in	this	description:	if	the	eighth	prior	branch	you
checked	out	was	master,	it	probably	had	a	different	tip	commit	then,	as
reflected	in	the	corresponding	reflog	entry—but	this	notation	refers	to	the
current	tip	of	that	branch.	(You	can’t	prefix	this	form	with	a	ref	name,	as	it	is
not	relative.)

The	critical	thing	to	keep	in	mind	about	this	syntax	is	that	it	is	relative	to	your

reflog,	which	is	part	of	your	repository	and	reflects	your	local	work	history;
commits	named	this	way	are	not	globally	meaningful	or	unique.	Your	reflog	is	a
history	of	a	particular	branch	name	in	your	repository	and	the	commits	to	which
it	has	referred	over	time	as	a	result	of	your	checkouts,	pulls,	resets,	amends,	etc.;
this	is	distinct	from	the	history	of	the	branch	itself	(a	portion	of	the	commit
graph).	The	name	master@{yesterday},	for	example,	may	refer	to	a	different
commit	in	your	repository	than	in	someone	else’s,	even	if	you	are	working	on
the	same	project;	it	depends	on	what	you	were	doing	yesterday.

The	Upstream	Branch
The	notation	foo@{upstream}	(or	just	foo@{u})	names	the	branch	upstream	of
the	branch	foo,	as	defined	by	the	repository	configuration.	This	is	usually
arranged	automatically	when	checking	out	a	local	branch	corresponding	to	a
remote	one,	but	may	be	set	explicitly	with	commands	such	as	git checkout	--
track,	git branch --set-upstream-to,	and	git push -u.	It	just	gives	the
object	ID	of	the	upstream	branch	head,	though;	options	to	git rev-parse	are
useful	to	find	out	the	upstream	branch	name:

$ git rev-parse HEAD@{upstream}

b801f8bf1a76ea5c6c6ac7addee2bc7161a79c93

$ git rev-parse --abbrev-ref HEAD@{upstream}

origin/master

$ git rev-parse --symbolic-full-name HEAD@{upstream}

refs/remotes/origin/master

The	first	is	more	convenient	but	may	have	difficulties	if	the	branch	name	is
ambiguous;	Git	will	warn	in	that	case.	(See	also	the	strict	and	loose
arguments	to	--abbrev-parse.)

Matching	a	Commit	Message

rev^{/regexp}
For	example,	HEAD^{/"fixed pr#1234"};	this	selects	the	youngest	commit
reachable	from	rev	whose	commit	message	matches	the	given	regular

expression.	You	can	omit	rev	by	writing	simply	:/regexp;	this	selects	the
youngest	matching	commit	reachable	from	any	ref	(branch	or	tag).	A	leading
!	is	reserved	(presumably	for	some	sort	of	negation,	though	it	does	not	yet
have	that	meaning),	so	you	have	to	repeat	it	as	an	escape	if	need	be:
:/!!bang	searches	for	the	string	“!bang”.

Notes
Watch	out	for	assuming	that	the	commit	you	get	is	the	one	you	want,
especially	if	you	omit	rev;	multiple	commits	might	match	your	regular
expression,	and	“youngest	commit”	means	the	one	closest	to	the	edge	of	the
commit	graph,	which	may	not	be	the	one	with	the	most	recent	committer	or
author	date.	git show -s	is	useful	to	check	that	you	have	the	right	commit;
omit	the	-s	if	you	want	to	see	the	commit	diff	as	well	as	the	description
(author,	committer,	date,	and	so	on).

The	match	is	on	the	entire	commit	message,	not	just	the	subject,	so	the
matching	text	itself	may	not	show	up	if	you	use	git log --oneline
together	with	a	match	expression.

You	can’t	specify	case-insensitive	matching;	if	you	want	that,	use	git log -
i --grep,	which	also	uses	the	broader	PCRE	regular	expressions	rather	than
the	simpler	“regcomp”	style	used	by	the	:/	syntax.

Following	Chains
There	are	various	kinds	of	pointers	or	indirection	in	Git:	a	tag	points	to	another
object	(usually	a	commit);	a	commit	points	to	the	tree	representing	the	content	of
that	commit;	a	tree	points	to	its	subtrees;	and	so	on.	The	syntax	rev^type	tells
Git	to	recursively	dereference	the	object	named	by	rev	until	it	reaches	an	object
of	the	given	type.	For	example:

release-4.1^{commit}	names	the	commit	tagged	by	release-4.1,	even	if
there	are	intermediate	tags.

master~3^{tree}	names	the	tree	associated	with	the	third	commit	back	from
the	tip	of	the	master	branch.

You	don’t	often	have	to	use	these	kinds	of	names,	as	Git	is	smart	about	doing
this	automatically	when	appropriate.	If	you	give	a	tag	to	git checkout,	it
knows	you	mean	to	check	out	the	tagged	commit;	similarly,	if	you	want	to	list
the	filenames	in	a	commit,	git ls-tree -r master~3	would	be	sufficient.
However,	sometimes	you	need	to	be	more	precise:	git show release-4.1
would	show	both	the	tag	and	the	commit;	you	could	use	release-
4.1^{commit}	to	show	only	the	commit.	Special	cases:

rev^0	is	a	synonym	for	rev^{commit}.

rev^{}	means	to	follow	the	chain	to	the	first	nontag	object	(of	whatever
type).

Addressing	Pathnames
The	notation	rev:path	names	a	file	by	pathname	in	a	given	commit	(e.g.,
olympus@{last.week}:pantheon/zeus).	Actually,	it’s	more	general	than	that:
recall	from	The	Object	Store	that	a	pathname	foo/bar/baz	names	an	object	in
some	tree,	either	a	blob	(the	contents	of	a	file	baz)	or	another	tree	(the	entries	in
a	directory	baz).	So	rev	can	be	any	tree-like	object:	a	tree	(obviously),	a	commit
(which	has	an	associated	tree),	or	the	index,	and	the	object	selected	by	path	may
be	a	blob	(file)	or	another	tree	(directory).	Special	cases:

:path
Addresses	an	object	in	the	index.

:n:path
Addresses	an	object	in	the	index,	including	its	stage	number	(see	Details	on
Merging);	:path	is	actually	short	for	:0:path.

WARNING

Outside	of	Git,	a	filename	such	as	foo/bar,	without	a	leading	slash,	is	relative	to	the	current
directory.	In	the	notation	master:foo/bar,	however,	it	is	absolute	in	the	sense	that	it	starts	at
the	top	of	the	tree	of	the	named	commit	(the	tip	commit	of	the	branch	master,	in	this	case).	So
if	you’re	in	the	directory	foo	and	want	to	see	the	version	of	bar	two	commits	back,	you	might
think	to	type	git show HEAD~2:bar—but	you’ll	get	an	error,	or	see	the	bar	in	the	top	level	of
the	repository,	if	there	is	one.

To	use	relative	pathnames	in	this	notation,	be	explicit	by	using	./	or	../;	here,	you	need	git
show HEAD~2:./bar	instead.

Naming	Sets	of	Commits
The	foregoing	notation	names	individual	commits.	Git	also	allows	you	to	name
sets	of	commits,	using	a	combination	of	reachability	in	the	commit	graph
(containment	in	a	branch	or	tag),	and	the	usual	mathematical	operations	on	sets:
union,	intersection,	complement,	and	difference.	Here,	the	letters	A,	B,	C,	and	so
on	are	names	for	commits	using	any	of	the	syntaxes	introduced	earlier.	These
terms	can	be	used	in	combination,	as	a	space-separated	list	of	terms,	and	the
definitions	read	as	actions:	adding	or	removing	certain	commits.	Remember	that
a	commit	is	always	considered	reachable	from	itself.

A
Add	all	commits	reachable	from	A.

^A
Remove	all	commits	reachable	from	A.

A^@
Add	all	commits	reachable	from	A,	but	exclude	A	itself.	This	acts	like	a
macro	that	expands	to	the	list	of	parents	of	A,	which	are	then	interpreted
according	to	(1).

A^!
Add	only	the	commit	A.	This	acts	like	a	macro	that	expands	A,	followed	by
the	list	of	A’s	parents	each	prefixed	with	a	caret,	which	are	then	interpreted
according	to	(1)	and	(2).

Since	cases	(3)	and	(4)	can	be	expressed	as	combinations	of	(1)	and	(2),	we	can
consider	just	the	latter.	To	get	a	definition	by	sets	for	any	expression,	say:

A ^X ^Y B C ^Z …

Rearrange	to	gather	the	T	and	^T	terms	together:

A B C … ^X ^Y ^Z …

And	rewrite	as:

(A ∪ B ∪ C ∪ …) ∩ (X ∪ Y ∪ Z ∪ …)′

where	each	letter	is	interpreted	as	in	(1),	and	the	“prime”	symbol	(′)	indicates	the
complement	of	a	set	in	usual	mathematical	notation.	If	either	category	of	term	is
absent,	that	union	is	the	empty	set;	thus,	if	there	are	no	caret	terms,	the
intersection	is	with	the	complement	of	the	empty	set,	that	is,	all	commits—and
so	does	not	affect	the	result.	Also,	a	term	^A	by	itself	is	meaningful	and
accepted,	if	not	terribly	useful:	according	to	our	definitions,	this	is	the
intersection	of	the	empty	set	with	the	set	of	commits	not	reachable	from	A—that
is,	the	empty	set.

Here	are	some	useful	abbreviations:

--not X Y Z …	=	^X ^Y ^Z …	
A..B	=	^A B

This	is	all	commits	reachable	from	B	but	not	from	A.	Note	that	this	excludes
A	itself.

A...B	=	A B --not $(git merge-base A B)
This	is	all	commits	reachable	from	either	A	or	B,	but	not	from	both.	It	is
called	the	symmetric	difference,	which	is	the	name	for	the	corresponding	set
operation:	(A ∪ B) − (A ∩ B).

For	the	..	and	...	operators,	a	missing	commit	name	on	either	side	defaults	to
HEAD.

Here	are	some	examples	using	this	simple	commit	graph.	See	Figure	8-2.

Figure	8-2.	Simple	commit	graph

master	=	{A,	B,	C,	X,	Y,	Z},	the	commits	on	the	master	branch

master..topic	=	{1,	2,	3},	the	commits	on	topic	not	yet	merged	into	master

master...topic	=	{1,	2,	3,	X,	Y,	Z},	the	commits	by	which	the	topic	and
master	branches	differ

A	useful	command	for	exploring	this	notation	is	git rev-list,	which	expands
one	of	these	expressions	into	the	corresponding	set	of	commits.	It’s	especially
helpful	to	combine	it	with	git name-rev	thus:

$ git rev-list rev | git name-rev --stdin --name-only

This	will	print	out	the	commit	set	using	names	relative	to	local	branches	and
tags.

WARNING

The	use	of	this	set	notation	depends	on	context.	git log	interprets	its	arguments	just	as	shown
in	this	section,	indicating	the	set	of	commits	on	which	it	should	report.	git checkout,
however,	does	not	accept	it,	since	it	doesn’t	make	sense	to	check	out	more	than	one	commit	at
a	time.	And	git show	treats	individual	revs	as	naming	just	one	commit	(rather	than	all
commits	reachable	from	it),	but	accepts	compound	forms	such	as	A..B.

Note	too	that	git diff	also	uses	the	..	and	...	syntaxes	with	pairs	of	commits—but	with
entirely	different	meanings!	git diff A..B	is	just	a	synonym	for	git diff A B.	Caveat

Gittor.

Chapter	9.	Viewing	History

The	primary	command	for	examining	the	commit	history	of	your	repository	is
git log.	The	documentation	for	this	command,	git-log(1),	is	about	30	pages
long,	and	we	shall	not	repeat	all	that	detail	here.	We	will	cover	its	main	modes	of
operation,	as	well	as	a	selection	of	the	most	common	and	useful	options	and
techniques.

Command	Format
The	format	of	the	command	is:

$ git log [options] [commits] [[--] path ...]

The	commits	parameter	specifies	the	commits	Git	should	list	for	you,	using	the
notation	discussed	in	Naming	Sets	of	Commits;	for	example:

git log
The	default	for	commits	is	HEAD,	so	this	lists	the	commits	reachable	from
the	current	HEAD	commit.	This	is	generally	a	branch,	but	may	not	be	if	you
have	checked	out	an	arbitrary	commit	and	are	in	“detached	HEAD”	mode
(see	Branches).

git log topic
Lists	the	commits	in	the	topic	branch,	even	if	you	are	on	another	branch.

git log alvin simon
Lists	all	commits	on	either	of	the	branches	alvin	or	simon.

git log alvin..simon
Lists	all	commits	in	simon	that	are	not	in	alvin;	this	is	often	those	commits
on	simon	that	have	occurred	since	you	last	merged	it	with	alvin.

Here,	the	names	topic,	alvin,	and	simon	could	also	be	tags,	or	expressions	such
as	master~3	or	780ae563.	You	can	also	use	patterns	to	indicate	sets	of	refs
instead	of	listing	them	all	individually,	with	these	options:

--{branches,tags,remotes}[=pattern]

Behave	as	if	all	branches,	tags,	or	remotes	were	given	on	the	command	line
as	the	commits	argument,	optionally	limiting	the	refs	matched	with	a	glob
pattern.	Match	refs	directly	with	--glob=pattern;	a	leading	refs/	is
implied	if	not	given.	A	trailing	/*	is	implied	if	the	pattern	does	not	contain	*
or	?.

Synonyms:	--all = --glob='*'

Thus,	git log --branches='foo*'	lists	all	branches	whose	names	begin	with
“foo”:	refs/heads/foobar,	refs/heads/foodie,	etc.

The	optional	list	of	file	pathnames	or	glob	patterns	further	limits	the	commits
listed,	to	those	that	touched	matching	paths	by	either	adding,	deleting,	or
modifying	the	named	files.	Use	the	--	separator	in	case	there’s	some	ambiguity
with	the	preceding	options	or	commit	names.

Output	Formats
The	default	output	format	is	fairly	detailed,	including	the	author	timestamp	and
commit	message:

$ git log

commit 86815742

Author: Richard E. Silverman <res@oreilly.com>

Date: Tue Sep 18 14:36:00 2012 -0700

 reduce annoyance

 Fix this software so that it is slightly less

 annoying than it was before, though less annoyance

 would still be good.

commit 72e4d8e8

Merge: 5ac81f5f af771c39

Author: Witch King of Angmar <nazgul@barad-dur.org>

Date: Tue Sep 18 14:35:54 2012 -0700

 Merge branch 'hobbits'

 Some scholars are of the opinion that "nazgûl" is

 exclusively plural, so that one does not speak of

 "a Nazgûl." Of course, it's best not to speak of

 them at all, regardless.

git log --oneline	gives	more	compact	output,	including	just	the	ID	and
message	subject	for	each	commit:

$ git log --oneline

86815742 reduce annoyance

72e4d8e8 Merge branch 'hobbits'

...

Note	that	this	is	one	reason	to	format	your	commit	messages	in	the	conventional
way,	with	a	subject	line:	it	makes	this	sort	of	summary	readable,	as	opposed	to
just	showing	the	beginning	of	a	sentence	trailing	off	to	the	right	(see	Commit
Messages).

The	--oneline	option	is	actually	short	for	--format=oneline	--abbrev-
commit,	and	the	default	is	--format=medium.	There	are	a	number	of	predefined
formats;	the	following	table	shows	the	full	list,	along	with	some	commit
elements	they	contain	(they	all	show	the	commit	ID).

format author author	date committer commit	date subject message

oneline ✓

short ✓ ✓

medium ✓ ✓ ✓ ✓

full ✓ ✓ ✓ ✓

fuller ✓ ✓ ✓ ✓ ✓ ✓

email ✓ ✓ ✓ ✓

raw ✓ ✓ ✓ ✓ ✓ ✓

The	email	format	produces	output	in	traditional	Unix	“mbox”	style,	with	one

email	message	per	commit	(and	here’s	yet	another	reason	for	the	standard
commit	message	format:	commit	subject	lines	become	the	email	subject	headers
of	each	message).	You	can	use	it	to	prepare	a	set	of	email	messages	describing
some	commits,	which	can	be	easily	read,	manipulated,	and	sent	with	most	Unix-
based	mail	programs.

The	raw	format	shows	all	the	information	in	the	commit	in	full	detail	and
uninterpreted	format,	including	the	full	40-digit	IDs	of	the	parent	commits	and
content	tree	object.

Defining	Your	Own	Formats
You	can	also	customize	the	display	format,	with	git log	--format
="format:string".	You	can	give	a	format	using	a	set	of	substitutions	similar	in
usage	to	the	printf	function	in	the	C	standard	library	(and	widely	copied	in
other	languages).	The	full	set	of	substitutions	is	in	the	PRETTY	FORMATS
section	of	git-log(1);	here	are	some	examples:

committer, commit ID, relative timestamp, subject

$ git log --date=relative --format='%an, %h, %ar, "%s"

Richard E. Silverman, 86815742, 6 hours ago, "reduce …

Witch King of Angmar, 72e4d8e8, 7 hours ago, "Merge b…

...

This	example	uses	color	and	underlining	to	distinguish	the	different	fields	on	the
line.	The	colors	may	not	show	here	depending	on	the	medium	in	which	you’re
reading	this	text,	but	give	it	a	try	(it	assumes	your	terminal	is	set	up	to	handle
color,	of	course):

commit ID, subject, committer, date

$ git log --date=short --format=\

"%C(blue)%h %C(reset)%s %C(magenta)%aN %C(green ul)\

%ad%C(reset)"

86815742 reduce annoyance Richard E. Silverman 2012-1…

72e4d8e8 Merge branch 'hobbits' Witch King of Angmar …

...

Make	sure	to	use	%Creset	at	the	end	of	such	a	format;	otherwise,	if	the	output	is

going	directly	to	a	terminal	rather	than	through	a	pager,	you’ll	leave	the	terminal
stuck	in	whatever	color	or	mode	you	last	used.	You	can	add	a	format	you	use
frequently	to	your	configuration	in	~/.gitconfig	or	elsewhere:

[pretty]

 colorful = "%C(blue)%h %C(reset)%s %C(magenta)%aN

 %C(green ul)%ad%C(reset)"

and	then	refer	to	it	by	name:

$ git log --format=colorful

Notes
To	use	a	double	quote	in	a	format	string	given	in	a	Git	configuration	file,
escape	it	with	backslash.

--pretty	is	a	synonym	for	--format	(from	the	term	“pretty	printing”).

A	format	given	as	format:template	places	a	newline	between	each	log	item;
there	is	no	newline	after	the	final	item.	Use	tformat:template	instead	to	get
a	final	newline	(“t”	for	“terminator”).

If	the	--format	argument	contains	a	percent	sign	(%),	then	Git	assumes
tformat:,	as	in	the	previous	example.

You	can	change	the	default	format	for	git log	by	setting	format.pretty;
this	affects	git show	as	well.

Limiting	Commits	to	Be	Shown
There	are	many	options	for	further	limiting	the	commits	to	be	shown	beyond	the
commits	expression	given	as	an	argument	to	git log;	here	is	a	selection	of
common	ones:

-n (-n n, --max-count=n)
Only	show	the	first	n	commits.

--skip=n
Skip	n	leading	commits	before	starting	output.

--{before,after}=date
Show	commits	made	before	or	after	a	specific	date	(synonyms:	--
{until,since}).	Note	that	this	refers	to	the	commit	timestamp;	there	is	no
analogous	simple	way	to	refer	to	the	author	timestamp.

--{author,committer}=regexp
Show	only	commits	whose	author	or	committer	header	(name <email>)
matches	the	given	regular	expression.	Multiple	instances	of	a	given
constraint	are	combined	with	logical	“or,”	but	(as	usual)	use	of	both	types
counts	as	logical	“and”;	thus,	git log	--author=Richard	--
author=Booboo	--committer=Felix	shows	commits	made	by	Felix,	whose
author	is	either	Richard	or	Booboo.

--grep=regexp
Show	only	commits	whose	log	messages	match	the	given	regular	expression.
Multiple	instances	are	combined	with	logical	“or”;	change	this	to	“and”	with
--all-match.	Use	--grep-reflog	to	match	reflog	entries	instead,	when
using	git log -g	to	examine	the	reflog	instead	of	the	commit	graph	(--
grep	still	matches	the	commit	message,	even	though	the	commits	examined
are	found	via	the	reflog;	it	does	not	match	the	reflog	comment	instead).

--{min,max}-parents=n

Show	only	commits	with	a	matching	number	of	parent	commits.	Synonyms:

--merges	=	--min-parents=2

--no-merges	=	--max-parents=1

--first-parent
Follow	only	the	first	parent	of	a	merge	commit,	rather	than	all	of	them.	This
can	give	a	more	useful	history	of	a	topic	branch	into	which	you	periodically
merge	from	a	more	central	branch,	keeping	it	up	to	date	with	the	main

development.	This	shows	only	the	activity	on	the	topic	branch	itself,	rather
than	commits	brought	in	from	the	main	branch	by	merging.

--diff-filter=[A|C|D|M|R|T]

Show	commits	containing	files	with	any	of	the	statuses	given	by	the
following	one-letter	codes.	The	“copied”	and	“renamed”	statuses	will	only
be	effective	if	copy	and	rename	detection	are	enabled	as	described:

A:	Added

C:	Copied

D:	Deleted

M:	Modified

R:	Renamed

T:	Type	change	(e.g.,	a	file	replaced	by	a	symbolic	link)

Regular	Expressions
A	number	of	options	affect	the	interpretation	of	regular	expressions:

-i (--regexp-ignore-case)
Ignore	case	differences	(e.g.,	hello	and	HELLO	will	both	match	“Hello”).

-E (--extended-regexp)
Use	extended	regular	expressions;	the	default	type	is	basic.

-F (--fixed-strings)
Consider	the	limiting	patterns	as	literal	strings	to	be	matched;	that	is,	don’t
interpret	them	as	regular	expressions	at	all.

--perl-regexp
Use	Perl-style	regular	expressions.	This	will	not	be	available	if	Git	is	not
built	with	the	--with-libpcre	option,	which	is	not	on	by	default.

Reflog
git log --walk-reflogs (-g)	shows	a	completely	different	log:	the	reflog.
This	is	a	log	of	actions	you’ve	taken	in	your	repository,	and	it	can	be	very
helpful	in	recovering	from	mistakes;	see	Double	Oops!.

Decoration
git log --decorate={no,short,full}	shows	refs	pointing	to	the	listed
commits:

$ git log --decorate

commit feca033e (HEAD, master)

Author: Richard E. Silverman <res@oreilly.com>

Date: Thu Dec 20 00:38:51 2012 -0500

 demo

commit 6faac5df (u/master, origin/master, origin/HEAD)

Author: Richard E. Silverman <res@oreilly.com>

Date: Mon Dec 3 03:18:43 2012 -0500

 working on ch09

commit 110dac65

Author: Richard E. Silverman <res@oreilly.com>

Date: Mon Dec 3 03:18:09 2012 -0500

 minor editing on earlier chapters

Note	the	inclusion	in	parentheses	of	various	local	and	remote	branch	names.	The
default	is	short;	full	uses	the	full	ref	name	(e.g.,	refs/heads/master	instead
of	just	master).

Date	Style
git log --date= {local,relative,default,iso,rfc,short,raw}

This	option	affects	how	dates	are	rendered	in	formatted	log	output,	as	long	as
the	format	has	not	explicitly	given	a	date	style.	For	example,	using	this

format:

[pretty]

 compact = %h %ad, \"%s\"

$ git log -1 --format=compact --date=local

6faac5df Mon Dec 3 03:18:43 2012, "working on ch09"

$ git log -1 --format=compact --date=relative

6faac5df 2 weeks ago, "working on ch09"

$ git log -1 --format=compact --date=iso

6faac5df 2012-12-03 03:18:43 -0500, "working on ch09"

$ git log -1 --format=compact --date=rfc

6faac5df Mon, 3 Dec 2012 03:18:43 -0500, "working on …

$ git log -1 --format=compact --date=short

6faac5df 2012-12-03, "working on ch09"

$ git log -1 --format=compact --date=raw

6faac5df 1354522723 -0500, "working on ch09"

default
Original	time	zone	of	author	or	committer

local
Local	time	zone

relative
How	far	in	the	past

iso
ISO	8601	format

rfc
RFC	2822	format	(as	found	in	email)

raw

Internal	Git	format

Listing	Changed	Files
git log --name-status	summarizes	which	files	changed	in	a	given	commit
(relative	to	its	predecessor),	and	the	nature	of	the	changes:

$ git log --name-status

commit bc0ba0f7

Author: Richard E. Silverman <res@oreilly.com>

Date: Wed Dec 19 23:31:49 2012 -0500

 fix directory; misc diffs with older ghc

M keepmeta.hs

commit f6a96775

Author: Richard E. Silverman <res@oreilly.com>

Date: Wed Dec 19 21:48:26 2012 -0500

 rename keepmeta

D .gitfoo

A Makefile

D commit.hs

A keepmeta.hs

The	single-letter	codes	to	the	left	of	the	filenames,	indicating	the	change	status
of	that	file	in	the	commit,	are	the	same	as	listed	for	the	--diff-filter	option
for	added,	deleted,	modified,	and	so	on.

git log --name-only	lists	only	filenames	without	the	status	codes,	and	--
stat	gives	an	ASCII-art	graph	(“diffstat”)	representing	the	amount	and	kind	of
change	in	each	file:

$ git log --stat

commit ddcd718b

Author: Richard E. Silverman <res@oreilly.com>

Date: Sun Dec 9 23:47:50 2012 -0500

 add KDC default referral feature

 Two new realm configuration parameters:

 * default_referral_realm (string, none)

 * cross_realm_default_referral (boolean, false)

 If default_referral_realm is set, then the KDC

 will issue referrals to the specified realm for

 TGS requests otherwise qualifying for a referral

 but lacking a static realm mapping, as long as the

 presented TGT is not cross-realm (setting

 cross_realm_default_referral omits that check).

src/config-files/kdc.conf.M | 12 +

src/include/adm.h | 4 +

src/include/k5-int.h | 2

src/kdc/do_tgs_req.c | 52 +----------

src/kdc/extern.h | 4 +

src/kdc/main.c | 12

src/lib/kadm5/admin.h | 5 -

src/lib/kadm5/alt_prof.c | 15 +

8 files changed, 95 insertions(+), 11 deletions(-)

git log --dirstat	summarizes	the	amount	of	change	in	subdirectories	(it	can
take	a	number	of	parameters	controlling	how	the	summarization	is	done):

$ git log --dirstat

commit 4dd1530f (tag: mit-krb5-1.10.3, origin/MIT)

Author: Richard E. Silverman <res@oreilly.com>

Date: Mon Jan 9 15:03:23 2012 -0500

 import MIT Kerberos 1.10.3

 52.1% doc/

 6.0% src/lib/

 12.4% src/windows/identity/doc/

 3.7% src/windows/identity/ui/

 8.8% src/windows/identity/

 3.5% src/windows/leash/htmlhelp/

 3.4% src/windows/leash/

 9.5% src/

Showing	and	Following	Renames	or	Copies
Ordinary	git log	does	not	show	file	renaming,	because	it	takes	longer	to	do	this

and	often	you’re	not	interested.	To	enable	renaming	detection,	use	--find-
renames[=n]	(-M[n]).	The	optional	integer	n	is	an	index	of	similarity:	consider
a	delete/add	pair	to	be	a	rename	if	the	before/after	files	are	at	least	n%	identical
(the	default	is	100%):

$ git log --name-status

commit 4a933304 (HEAD, master)

Author: Richard E. Silverman <res@qoxp.net>

Date: Thu Dec 20 01:08:14 2012 -0500

 Rename foo; wouldn’t bar be better?

D foo

A bar

$ git log --name-status -M

commit 4a933304 (HEAD, master)

Author: Richard E. Silverman <res@qoxp.net>

Date: Thu Dec 20 01:08:14 2012 -0500

 Rename foo; wouldn’t bar be better?

R100 foo bar

To	have	Git	follow	a	file	past	a	rename,	use	git log --follow;	this	only	works
when	you	give	a	single	file	to	follow:

$ git log bar

commit 4a933304 (HEAD, master)

Author: Richard E. Silverman <res@oreilly.com>

Date: Thu Dec 20 01:08:14 2012 -0500

 Rename foo; wouldn’t bar be better?

$ git log --follow bar

commit 4a933304 (HEAD, master)

Author: Richard E. Silverman <res@oreilly.com>

Date: Thu Dec 20 01:08:14 2012 -0500

 Rename foo; wouldn’t bar be better?

commit 4e286d96

Author: Richard E. Silverman <res@oreilly.com>

Date: Tue Dec 18 04:57:55 2012 -0500

 Add “foo” in its glorious fooness!

Detecting	Copies
A	“copied”	file	is	a	new	path	appearing	in	a	commit	with	identical	or	similar
contents	to	an	existing	one	(one	already	in	a	prior	commit).	git log	--find-
copies[=n]	(-C[n])	does	the	same	for	detecting	copies	as	-M	does	for	renames.
-CC	(or	--find-copies-harder)	will	consider	all	files	in	a	commit	as	potential
sources	of	copying,	while	plain	-C	considers	only	files	that	changed	in	that
commit.

Rewriting	Names	and	Addresses:	The
“mailmap”
The	same	person’s	name	or	email	address	as	embedded	in	commits	may	vary	in
a	single	repository	history,	depending	on	settings	she	had	at	various	times	as	she
was	working.	Git	has	a	facility	to	normalize	these	for	display	and	collation,
called	the	mailmap.	A	mailmap	file	may	be	named	.mailmap	at	the	top	of	the
working	tree,	or	have	any	name	given	by	the	mailmap.file	configuration
option,	and	has	lines	in	any	of	the	following	formats:

Correct Name <user@foo.com>
This	collates	by	address	and	rewrites	names:	entries	of	this	form	with	the
same	address	identify	commits	marked	with	those	addresses	as	being	by	the
same	person,	with	the	specified	name	replacing	the	names	given	in	those
commits.

<desired@email.address> <random@other.address>
This	collates	by	address	and	rewrites	addresses:	entries	of	this	form	with	the
same	desired	address,	but	differing	“random	other”	addresses,	identify
commits	by	the	varying	addresses	as	being	by	the	same	person,	with	the
specified	address	replacing	those	appearing	in	the	commits	(but	leaving	the
names	alone).

Correct Name <desired@email.com> <random@other.org>

This	collates	by	address	and	rewrites	both	name	and	address:	entries	of	this
form,	with	the	same	desired	address	but	differing	names	and	other	addresses,
identify	those	commits	as	being	by	the	same	person,	with	the	specified	name
and	desired	address	replacing	those	appearing	in	the	commits.

Correct Name <desired@email.com> Other Name <random@other.org>
This	collates	by	both	name	and	address,	and	rewrites	both	as	well:	entries	of
this	form	with	the	same	“correct	name”	and	desired	address	identify	commits
marked	with	the	given	combinations	of	“other”	name/address	pairs	as	being
by	the	same	person,	with	the	specified	name	and	address	replacing	those
appearing	in	the	commits.

For	example,	this	mailmap	entry:

Richard E. Silverman <res@oreilly.com>

coalesces	all	commits	marked	with	the	address	res@oreilly.com	and	presents
my	name	consistently	as	“Richard	E.	Silverman,”	even	if	some	say	“Richard
Silverman”	or	“Rich	S.”	These	entries:

Richard E. Silverman <res@qoxp.net> <res@oreilly.com>

Richard E. Silverman <res@qoxp.net> <slade@shore.net>

Richard E. Silverman <res@qoxp.net> <rs@wesleyan.edu>

identify	commits	marked	with	the	three	addresses	appearing	on	the	right,	and
rewrite	both	name	and	address	to	be	“Richard	E.	Silverman”	and	res@qoxp.net.

The	coalescing	and	rewriting	features	are	used	by	the	command	git shortlog,
which	summarizes	history	using	the	commit	subjects	(or	other	format	given	by	-
-format)	and	grouping	by	author.	The	rewriting	feature	alone	is	used	by	git
log	and	git blame	if	the	format	specifies	it.	Particular	escapes	for	committer
and	author	info,	given	in	the	PRETTY	FORMATS	section	of	git-log(1),	take	the
mailmap	(if	any)	into	account;	for	example,	this	version	of	the	“compact”	format
defined	earlier:

[pretty]

 compact = %aN (%h) %aD, \"%s\"

(note	the	capital	N	and	D)	shows	the	author	name	and	address	as	rewritten	by	the
mailmap.

Shortening	Names
Another	use	for	the	mailmap	is	shortening	names	for	compact	display.	Full
names	can	be	truncated	and	difficult	to	read	in	a	short	format,	such	as	the
common	git log --oneline.	You	can	maintain	a	mailmap	rewriting	full
names	to	your	organization’s	computer	account	names,	for	example,	which	are
typically	shorter.	You	can	then	define	log	formats	that	use	them	as	above;	you
could	place	these	in	the	system-level	Git	configuration	used	by	everyone
(usually	/etc/gitconfig),	or	have	a	smaller	group	explicitly	include	a	shared	file
via	the	include.path	variable.	This	mailmap:

res <res@example.com>

res <rsilverman@example.com>

john <jpreston@example.com>

john <john@example.com>

together	with	the	second	“compact”	log	format	above	causes	the	author	name
and	addresses	for	Richard	Silverman	and	John	Preston	to	appear	as	“res”	and
“john”	instead,	also	taking	into	account	two	different	email	address	formats.

Searching	for	Changes:	The	“pickaxe”
The	Git	“pickaxe,”	git log -S string,	lists	commits	that	changed	the	number
of	occurrences	of	string	in	at	least	one	file.	Note	that	this	is	slightly	different
from	string	appearing	in	the	commit	diff	at	all:	if	a	commit	removed	one
occurrence	and	added	another	one	elsewhere,	the	pickaxe	will	not	show	it.
Nonetheless,	this	is	a	useful	method	of	looking	for	changes.	For	example,	if	you
want	to	know	when	a	particular	feature	was	added,	using	this	command	with	the
name	of	a	function	or	variable	specific	to	the	feature	will	turn	it	up,	as	the
earliest	commit	that	introduced	that	term.	git log -G pattern	does	the	same
with	a	regular	expression.

If	you	combine	the	pickaxe	with	a	git log	option	that	lists	files,	such	as	--
name-status,	Git	shows	only	those	files	that	triggered	the	listing	(those	in

which	the	number	of	string	or	pattern	occurrences	changed).	If	you	add	--
pickaxe-all,	then	Git	shows	all	files	touched	by	the	listed	commits.	This
allows	you	to	see	the	entire	changeset	associated	with	any	commit	that	matched
the	pattern	you’re	interested	in.

Showing	Diffs
git log -p	shows	the	“patch”	or	“diff”	associated	with	each	commit
(illustrating	the	actual	changes	made	to	the	files,	only	for	text	files,	naturally),
after	the	usual	commit	information	as	indicated	by	the	log	format	in	use.
Normally,	no	diff	is	shown	for	merge	commits,	however	you	can	use	these
options:

-m
Shows	each	pairwise	diff	between	the	merge	and	its	parents.

-c
Shows	the	differences	with	all	parents	simultaneously	in	a	merged	format	(a
generalization	of	the	traditional	“unified	diff”),	rather	than	serially	as	with	-
m,	and	only	for	files	that	were	modified	in	all	branches.

--cc
Implies	-c	and	further	simplifies	the	diff	by	showing	only	conflicts;	change
regions	with	only	two	variants	of	which	the	merge	picked	one	unmodified
are	not	shown.

Color
The	option	--color[={always,auto,never}]	uses	color	to	help	distinguish
difference	regions;	additions	are	in	green	and	deletions	in	red.	The	default	is
never,	--color	means	--color=always,	and	--color=auto	means	to	use	color
when	standard	output	is	a	terminal.

Word	Diff
The	option	--word-diff[={plain,color,none}]	shows	word-level	changes

within	lines,	rather	than	entire	changed	lines.	For	example,	this:

- I changed a word.

+ I altered a word.

becomes	this:

I [-changed-]{+altered+} a word.

with	--word-diff=plain.	This	is	often	more	useful	than	line	diffs	if	the	content
is	English	prose	rather	than	software	code.	The	color	option	uses	color	instead
of	the	markers	shown	earlier	to	indicate	the	additions	and	deletions,	again	using
green	and	red.	It	is	possible	to	change	the	regular	expression	Git	uses	to
determine	word	boundaries	with	--word-diff-regex;	see	git-log(1)	for	details.

Comparing	Branches
Often	we	are	interested	in	understanding	the	relationship	between	the	content	of
two	branches,	particularly	in	how	they	have	diverged.	As	discussed	in	Naming
Sets	of	Commits,	a	basic	tool	for	this	is	the	symmetric	difference	A...B,	which
shows	those	commits	in	either	branches	A	or	B	but	not	in	both	(i.e.,	those
commits	added	to	either	branch	since	they	last	diverged).	Sometimes	this	isn’t
enough,	though.	For	example,	git cherry-pick	creates	a	new	commit	based	on
an	existing	one,	by	reapplying	the	changes	introduced	by	the	original	commit	at
a	different	place	in	the	history.	It	is	useful	in	situations	where	incorporating
changes	by	merging	is	inconvenient	or	impossible	due	to	repository
organization.	If	a	commit	has	been	cherry-picked	from	one	branch	to	another,
then	it	will	be	included	in	their	symmetric	difference	anyway,	since	they	are
distinct	commits	that	just	happen	to	represent	the	same	changeset.	git log --
cherry-pick	takes	this	into	account	by	omitting	commits	that	have	identical
diffs.	Consider	the	commit	graph	in	Figure	9-1,	in	which	commit	2	was	produced
with	git cherry-pick D	on	the	other	branch,	and	so	it	and	D	have	the	same
changeset.

Figure	9-1.	git	log	and	cherry-picking

Assuming	all	the	other	commits	have	distinct	changesets,	we	will	see	something
like:

$ git log master...other

e5feb479 E

070e87e5 D

9b0e3dc5 C

6f70a016 3

0badfe94 2

15f47204 1

Whereas	this	omits	the	patch-equivalent	commits,	showing	just	content
differences:

$ git log --cherry-pick master...other

e5feb479 E

9b0e3dc5 C

6f70a016 3

15f47204 1

The	variation	--cherry-mark	will	mark	duplicate	commits	with	an	equal	sign,
instead	of	omitting	them:

$ git log --cherry-mark master...other

+ e5feb479 E

= 070e87e5 D

+ 9b0e3dc5 C

+ 6f70a016 3

= 0badfe94 2

+ 15f47204 1

Displaying	Sides
git log master..other	(with	just	two	dots)	shows	one	side	of	this	situation:
those	commits	on	other	that	are	not	on	master.	If	you	want	cherry-pick
detection,	you	have	to	consider	both	sides	as	before,	but	then	you	are	no	longer
viewing	just	one	side.	You	can	recover	this	by	adding	--{left,right}-only:

$ git log master..other

6f70a016 3

0badfe94 2

15f47204 1

$ git log --cherry-pick --right-only master...other

6f70a016 3

15f47204 1

This	shows	commits	on	other	that	are	not	contained	in	master	or	patch-
equivalent	to	another	commit	in	their	difference,	in	this	case,	omitting	commit	2
since	it	is	equivalent	to	D.	And	similar	to	--cherry-mark,	the	related	option	--
left-right	displays	the	side	of	a	commit	with	the	symbols	<	and	>:

$ git log --cherry-mark --left-right master...other

< e5feb479 E

< 070e87e5 D

= 9b0e3dc5 C

> 6f70a016 3

= 0badfe94 2

> 15f47204 1

The	simple	option	--cherry	is	a	synonym	for	--right-only	--cherry-mark	-
-no-merges,	so	that	this:

$ git log --cherry HEAD@{upstream}...

shows	the	commits	on	your	side	of	the	current	branch	(ignoring	possible	merges
with	other	branches),	marking	those	that	duplicate	changes	made	by	distinct
commits	on	the	other	side	(probable	cherry-picks,	either	literally	or	by	another

means	such	as	applying	patches	via	email	with	git format-patch	and	git am).

Showing	Notes
git log --notes[=ref]	includes	any	notes	on	a	commit	after	its	message;	see
git	notes	for	how	this	command	and	Git	notes	work	in	general.

Commit	Ordering
Normally,	git log	displays	commits	in	reverse	chronological	order	according	to
the	committer	(not	author)	timestamps.	You	can	alter	this	in	three	ways:

--date-order	shows	all	children	before	their	parents;

--topo-order	(for	“topological”)	implies	--date-order,	and	also	groups
commits	from	the	same	b	ranch	together;	and

--reverse	reverses	the	output	list.

WARNING

The	--reverse	option	does	not	affect	the	selection	of	commits	to	list,	but	rather	the	final	order
in	which	they	are	listed;	that	is,	it	is	applied	last.	You	might	expect	the	following	command	to
show	the	root	commit,	by	first	listing	all	commits	in	reverse	chronological	order	and	then
showing	only	the	first	one:

$ git log --reverse -n 1

Instead,	however,	it	shows	the	latest	commit,	by	picking	the	first	one	from	the	normal	output
of	git log;	the	reversal	applies	to	a	list	containing	that	single	commit,	and	thus	has	no	effect.

History	Simplification
Git	has	a	number	of	options	for	pruning	sections	of	history	according	to	various
notions	of	equivalence	between	parent	and	child	commits,	documented	in	the
“History	Simplification”	section	of	git-log(1).	Since	these	are	fairly	specialized
and	abstruse,	useful	mostly	with	very	large	and	complex	histories,	and	well

documented	in	the	man	page,	we	do	not	cover	them	here.

Related	Commands

git	cherry

git cherry [-v] [upstream [head [limit]]]

This	command	is	similar	to	git log --cherry,	but	more	specialized.	It	shows
commits	on	a	branch	that	are	not	in	the	upstream,	marking	those	whose	changes
are	duplicated	by	distinct	upstream	commits	with	a	minus	sign	(while	other
commits	have	a	plus	sign).	Using	the	same	example	as	before,	if	we’re	on	the
other	branch	for	which	master	is	upstream:

$ git cherry -v --abbrev

+ 6f70a016 3

- 0badfe94 2

+ 15f47204 1

This	shows	that	we	have	three	new	commits	on	our	side,	but	the	changes	from
commit	2	are	already	applied	upstream	(the	-v	option	includes	the	commit
message	subject	line).	As	shown,	you	can	give	specific	current	(head)	and
upstream	branches	for	comparison,	and	also	a	limit	commit	so	that	only	commits
in	limit..head	are	eligible	to	be	shown.	The	limit	would	be	an	earlier	commit
on	the	head	branch,	past	which	you	are	not	interested	in	looking.	The	default	is
equivalent	to	git cherry HEAD@{upstream} HEAD	(no	limit).

git	shortlog
As	mentioned	earlier,	git shortlog	summarizes	commit	history,	grouping
commits	by	author	with	the	number	of	commits	and	their	subjects,	and	applying
a	mailmap	if	available	to	rewrite	author	names	or	email	addresses:

$ git shortlog

Ammon Riley (1):

 Make git-svn branch patterns match complete URL

Amos King (2):

 Do not name "repo" struct "remote" in push_http…

 http-push.c: use a faux remote to pass to http_…

Amos Waterland (6):

 tutorial note about git branch

 Explain what went wrong on update-cache of new …

 Do not create bogus branch from flag to git bra…

 git rebase loses author name/email if given bad…

 AIX compile fix for repo-config.c

 wcwidth redeclaration

...

This	can	be	useful	in	preparing	the	release	notes	for	a	new	version	of	a	project,
automatically	collating	the	new	features	in	this	release.	You	could	limit	it	to	just
the	features	since	the	last	version	by	referring	to	the	tags	for	the	previous	and
current	release	(e.g.,	git shortlog v1.0..v1.1).

Chapter	10.	Editing	History

In	this	chapter,	we	cover	various	techniques	for	editing	repository	history.	Earlier
chapters	covered	simple	cases	of	this,	focused	on	correcting	individual	commits;
here,	we’re	concerned	with	larger	changes:	moving	branches,	merging	or
splitting	repositories,	systematically	altering	an	entire	history,	and	so	on.

The	caution	given	earlier	bears	repeating	here:	you	should	not	generally	use	any
of	these	techniques	on	history	that	has	already	been	published	to	other	people!	It
will	break	their	ability	to	use	the	push/pull	mechanism,	which	may	be	very
difficult	and	awkward	to	recover	from.	Only	use	these	on	private	repositories,	or
if	you	can	coordinate	the	change	with	everyone	involved.	It’s	easiest	if	all	users
of	a	shared	repository	commit	and	push	all	their	outstanding	changes,	then
simply	reclone	it	after	you	make	your	edits.	Or,	they	can	use	git rebase	instead
as	we	are	about	to	describe,	if	they’re	a	bit	more	adventurous.

Rebasing
We	have	already	covered	special	cases	of	rebasing,	especially	for	editing	a
sequence	of	commits	at	a	branch	tip;	here,	we	consider	the	general	case.	The
general	purpose	of	git rebase	is	to	move	a	branch	from	one	location	to
another.	Since	commits	are	immutable,	they	can’t	actually	be	moved	(their
parent	commits	would	change),	so	this	entails	making	new	commits	with	the
same	changesets	and	metadata:	author,	committer,	timestamps,	and	so	on.	The
steps	Git	follows	during	a	rebase	are	as	follows:
1.	 Identify	the	commits	to	be	moved	(more	accuratedly,	replicated).

2.	 Compute	the	corresponding	changesets	(patches).

3.	 Move	HEAD	to	the	new	branch	location	(base).

4.	 Apply	the	changesets	in	order,	making	new	commits	preserving	author
information.

5.	 Finally,	update	the	branch	ref	to	point	to	the	new	tip	commit.

The	process	of	making	new	commits	with	the	same	changesets	as	existing	ones
is	called	“replaying”	those	commits.	Step	4	can	be	modified	with	an	“interactive
rebase”	(git rebase	--interactive (-i)),	allowing	you	to	edit	the	commits
in	various	ways	as	you	move	them;	see	the	earlier	discussion	of	this	feature
(Editing	a	Series	of	Commits).

The	most	general	form	of	the	command	is:

$ git rebase [--onto newbase] [upstream] [branch]

which	means	to	replay	the	commit	set	upstream..branch	starting	at	newbase.
The	defaults	are:

upstream: HEAD@{upstream}
The	upstream	of	the	current	branch,	if	any

branch:

HEAD

newbase:

The	upstream	argument,	whatever	its	default	or	user-supplied	value	is

For	example,	given	the	commit	graph	in	Figure	10-1,	the	command	git rebase
--onto C master topic	would	move	the	topic	branch	as	shown	in	Figure	10-
2.

Figure	10-1.	Before	rebasing

Figure	10-2.	After	rebasing

1′,	2′,	and	3′	are	new	commits	replicating	the	changesets	of	commits	1,	2,	and	3.
Calling	B	the	“base”	of	the	original	(unmerged	portion	of)	the	topic	branch,	this
changes	the	base	from	B	to	C,	thus	“rebasing”	the	branch.

The	behavior	of	the	default	arguments	to	git rebase	reveals	the	simplest	use	of
rebasing:	keeping	a	sequence	of	local	commits	at	the	tip	of	a	branch	as	the
upstream	progresses,	rather	than	performing	a	merge.	After	doing	a	git fetch,
you	see	that	your	local	master	branch	has	diverged	from	its	upstream	counterpart
(see	Figure	10-3).

Figure	10-3.	Before	rebasing

Following	the	preceding	defaults,	the	simple	command:

$ git rebase

actually	means:

$ git rebase --onto origin/master origin/master master

which	in	turn	means	to	replay	the	commit	set	origin/master..master	at
origin/master,	resulting	in	the	change	shown	in	Figure	10-4.

Figure	10-4.	After	rebasing

Your	local	commits	1,	2,	and	3	have	been	shifted	forward	to	remain	based	off	the
tip	of	the	upstream	master.	This	is	such	a	common	use	of	rebasing	for	certain
workflows	that	there	is	a	--rebase	option	to	git pull	that	runs	git rebase	in
between	its	fetch	and	merge	steps	(see	Pull	with	Rebase).	In	this	case,	the	final
step	merging	origin/master	into	master	will	do	nothing,	since	if	the	rebase	is
successful,	the	upstream	branch	origin/master	is	now	already	contained	in	the
local	master.

Undoing	a	Rebase
The	final	step	of	a	successful	rebase	is	to	repoint	the	ref	of	the	branch	being
moved,	from	the	old	tip	commit	to	the	new	one.	The	original	commits	are	not
immediately	expunged	in	any	way,	but	merely	abandoned:	they	are	no	longer
reachable	in	the	commit	graph	from	any	branch,	and	will	eventually	be	garbage
collected	by	Git	if	they	remain	that	way	for	some	time.	To	undo	the	rebase
operation,	then,	all	you	need	to	do	is	move	the	branch	ref	back	to	its	original
spot,	which	you	can	discover	using	the	reflog.	After	the	git rebase,	for

example,	your	reflog	would	look	something	like	this:

$ git log -g

b61101ac HEAD@{0}: rebase finished: returning to

refs/heads/master

b61101ac HEAD@{1}: rebase: 3

6f554c9a HEAD@{2}: rebase: 2

cb7496ab HEAD@{3}: rebase: 1

baa5d906 HEAD@{4}: checkout: moving from master to

baa5d906...

e3a1d5b0 HEAD@{5}: commit: 3

The	checkout	step	is	the	beginning	of	the	rebase	as	Git	moves	HEAD	to	the
new	base,	the	tip	of	the	upstream	origin/master	(here	at	commit	baa5d906).	The
rebase	steps	replay	commits	1,	2,	and	3	at	the	new	location,	and	in	the	final
step,	the	local	master	branch	(full	ref	name	refs/heads/master)	is	reset	to	the
new	tip	commit.	In	the	earliest	reflog	entry,	you	can	see	when	you	made	your
original	version	of	commit	3,	with	commit	ID	e3a1d5b0.	To	return	to	that	state,
all	you	need	to	do	is:

$ git reset --hard e3a1d5b0

The	original	tip	commit	might	not	be	at	the	same	spot	as	shown	here,	since	that
depends	on	the	exact	sequence	of	commands	you	used,	but	it	will	show	up
somewhere	earlier	in	the	reflog.

Importing	from	One	Repository	to	Another
Suppose	you	would	like	to	combine	two	repositories—say,	to	import	the	entire
content	of	repository	B	as	a	subdirectory	b	of	repository	A.	You	could	just	copy
the	working	tree	of	B	into	A	and	then	add	and	commit	it,	of	course,	but	you	want
to	retain	the	history	of	repository	B	as	well	as	the	content.	Though	that’s	easy	to
say,	it’s	not	immediately	clear	what	this	means.	The	Git	history	of	each
repository	consists	of	an	entire	graph	of	individual	content	snapshots,	branching
and	merging	in	possibly	complex	ways	over	time,	and	there	are	different	ways	in
which	you	might	want	to	combine	the	two.	In	this	section,	we	discuss	a	few	of
them.

Importing	Disconnected	History
The	simplest	way	to	combine	two	repositories	is	simply	to	import	the	whole
commit	graph	of	one	into	the	other,	without	connecting	them	in	any	way.
Ordinarily,	a	repository	has	a	single	“root	commit,”	that	is,	a	commit	with	no
parents—the	first	commit	created	after	the	repository	was	initialized,	of	which
all	other	commits	are	descendants.	However,	there	is	nothing	preventing	you
from	having	multiple	root	commits	in	a	single	repository,	in	which	case	the
commit	graph	consists	of	multiple	disconnected	regions;	in	Figure	10-5,
commits	A	and	1	are	both	root	commits.

Figure	10-5.	Multiple	root	commits

Here’s	how	to	import	repository	B	into	repository	A	in	this	fashion:

$ cd A

$ git remote add B URL

$ git fetch B

warning: no common commits

...

 [new branch] master -> B/master

 [new branch] zorro -> B/zorro

$ git for-each-ref --shell \

 --format='git branch --no-track %(refname:short)

 %(refname:short)' \

 'refs/remotes/B/*' | sed -e 's:/:-:' | sh -x

$ git branch

 B-master

 B-zorro

 master

$ git remote rm B

This	recipe	uses	git for-each-ref,	a	versatile	tool	for	generating	scripts	on
the	fly	that	apply	to	a	given	set	of	refs	(in	this	case,	branches).	For	each	named
ref,	here	selected	by	the	pattern	refs/remotes/B/*	(all	tracking	branches	for
the	remote	B),	it	generates	a	separate	git branch	command	substituting	the
names	marked	with	%(…)	to	reflect	that	ref.	This	series	of	commands	then	goes
through	the	Unix	command	sed	rewriting	B/foo	to	B-foo,	and	finally,	the
commands	are	run	by	feeding	them	into	the	Bourne	shell	(sh).	(See	git-for-each-
ref(1)	for	more	detail	on	this	handy	command	for	Git	automation.)

The	case	of	pulling	in	a	completely	disconnected	commit	graph	is	sufficiently
unusual	that	Git	warns	you	about	it,	saying	that	the	repository	you’re	fetching
has	“no	common	commits”	with	this	one.

After	the	fetch	command,	Git	has	copied	the	entire	commit	graph	of	B	into	the
object	database	of	A,	but	the	only	references	in	A	to	the	new	branches	are
remote-tracking	ones:	B/master	and	B/zorro.	To	finish	incorporating	B	into	A,
we	need	to	make	local	branches	for	these.	The	git for-each-ref	incantation
prepares	and	runs	a	set	of	Git	commands	that	create	a	local	branch	named	B-x
for	each	remote	branch	B/x,	by	running	git branch --no-track B-x B/x.	The
--no-track	option	avoids	creating	unnecessary	tracking	relationships	that
would	just	be	removed	later.	We	prefix	the	new	branch	names	with	B-,	since
there	may	be	clashes	(as	here,	where	there	is	a	master	branch	in	each	repository).
Finally,	when	done,	we	remove	the	remote	B,	since	we	do	not	intend	to	continue

tracking	the	other	repository;	the	remote	was	just	a	mechanism	to	perform	the
import.

This	demonstrates	a	general	way	of	doing	it;	you	can	of	course	just	run	the
appropriate	git branch	commands	yourself	to	name	the	new	branches	as	you
wish,	if	there	are	few	of	them,	or	rename	them	afterward	with	git branch -m
old new.

Although	this	is	the	easiest	method	of	combining	two	histories,	it	is	also	not
usually	what	you	want	to	do,	because	you	can’t	use	the	Git	merge	mechanism	on
branches	that	were	originally	part	of	distinct	histories.	This	is	because	git
merge	looks	for	a	“merge	base”:	a	common	ancestor	commit	of	the	branches
being	merged—and	in	this	case,	there	is	no	such	commit.	You	might	use	this
technique	if	you	have	rearranged	the	history	of	a	repository,	but	want	to	keep	the
original	history	around	for	reference,	and	it’s	more	convenient	to	have	it	both	in
one	repository	than	split	over	two.

Importing	Linear	History
To	import	history	so	that	it	is	connected	to	the	commit	graph	of	the	receiving
repository,	you	can’t	just	use	the	existing	commits	of	the	donor	repository	as
before,	since	you	need	new	parent	commit	pointers	to	connect	the	two	histories
and	you	can’t	actually	change	commits.	Instead,	you	must	make	new	commits
introducing	the	same	content	(as	with	git rebase).	If	the	history	you	want	to
import	is	linear—either	the	entire	repository,	or	the	branch	you’re	interested	in—
then	you	can	use	git format-patch	and	git am	to	do	this	easily	(these
commands	are	described	more	fully	in	Patches	with	Commit	Information).
Here’s	a	formula	for	adding	the	complete	history	of	branch	foo	in	repository	B	to
the	current	branch	in	repository	A:

$ cd A

$ git --git-dir /path/to/B/.git format-patch --root --stdout foo | git am

This	formats	the	commits	on	branch	foo	in	repository	B	as	a	series	of	patches
with	accompanying	metadata	(author,	committer,	timestamps,	and	so	on),	and
feeds	that	into	git am,	which	applies	the	patches	as	new	commits	in	repository
A.	Note	that	you	can’t	refer	to	B	here	directly	as	a	remote	repository	with	a	URL;

you	need	a	local	copy	to	use,	for	which	you	can	just	clone	B	and	check	out	the
branch	you	want	to	import.

Because	you	are	now	applying	patches	rather	than	importing	commits	whole,
you	might	encounter	conflicts	if	the	source	and	destination	repositories	have
overlapping	content	(the	same	filenames).	To	avoid	this,	you	can	tell	git am	to
prepend	a	directory	to	all	filenames	with	--directory,	thus	depositing	the	files
in	the	imported	history	inside	a	new	directory.	Combined	with	the	-pn	option,
which	first	removes	n	leading	directories	from	those	filenames,	and	with	limiting
the	source	files	via	an	argument	to	git format-patch,	you	can	import	a
particular	directory	or	other	subset	of	files	into	a	new	directory	without	conflicts.
Extending	the	preceding	example:

$ cd A

$ git --git-dir /path/to/B/.git format-patch --root --stdout foo -- src | git am -p2

--directory dst

This	imports	the	history	on	the	branch	foo	in	repository	B,	limited	to	files	in	the
directory	src,	and	places	those	files	in	directory	dst	instead	in	repository	A.

Without	--root,	just	giving	a	rev	foo	means	foo..HEAD:	the	recent	commits	on
the	current	branch	that	are	not	in	the	history	of	foo.	You	can	also	give	a	range
expression	of	your	own	to	specify	the	commits	to	include	(e.g.,
9ec0eafb..master).

WARNING

If	the	source	branch	history	is	not	linear	(contains	merge	commits),	git format-patch	won’t
complain;	it	will	just	produce	patches	for	all	the	nonmerge	commits.	This	is	likely	to	cause
conflicts;	see	the	next	section.

Importing	Nonlinear	History
Because	the	git format-patch/git am	technique	works	only	on	a	linear	source
history,	here	is	a	recipe	for	importing	a	branch	with	a	nonlinear	history,	using
git rebase	instead.	You	can	use	the	present	procedure	on	linear	history	as	well,
if	you	find	the	previous	one	too	slow	or	unwieldy	(as	it	might	be;	it’s	simpler,

but	it’s	not	what	those	commands	are	really	intended	to	do).

The	following	example	adds	the	history	of	the	branch	isis	in	a	remote	repository
to	the	tip	of	the	current	branch	in	this	one	(here,	the	master	branch):

Add the source repository as a temporary remote

named “temp”.

$ git remote add temp URL

Fetch the branch “isis” from the remote.

$ git fetch temp isis

...

* branch isis -> FETCH_HEAD

Make a local branch named “import” for the remote

branch we want to bring in.

$ git branch import FETCH_HEAD

Replay the “import” branch commits on the current

branch, preserving merges.

$ git rebase --preserve-merges --root --onto HEAD import

...

Successfully rebased and updated refs/heads/import.

Finally, fast-forward the local branch (master) to

its new tip (where “import” is now), and remove the

temporary branch and remote.

$ git checkout master

Switched to branch 'master'

$ git merge import

Updating dffbfac7..6193cf87

Fast-forward

...

$ git branch -d import

Deleted branch import (was 6193cf87).

$ git remote rm temp

This	technique	copies	the	source	branch	into	the	current	repository	under	a
temporary	name,	uses	git rebase	to	graft	it	onto	the	tip	of	the	current	branch,
then	moves	the	local	branch	up	to	its	new	tip	and	deletes	the	temporary	import
branch.

Unfortunately,	git rebase	lacks	the	capabilities	provided	by	the	various
arguments	and	options	to	git format-patch	and	git am	shown	earlier,	which
let	you	relocate	files	as	you	import	to	avoid	pathname	conflicts.	To	get	the	same
result,	you’ll	need	to	clone	the	source	repository	and	rearrange	it	first	before
importing	from	it.	The	section	The	Big	Hammer:	git	filter-branch	shows	how	to

do	this.

Commit	Surgery:	git	replace
Sometimes,	you	really	just	need	to	replace	a	single	commit—but	it’s	buried	in
the	middle	of	a	complex	history	with	multiple	branches	that	would	be	difficult	to
rewrite	using	git rebase	-i.	For	example,	suppose	you	accidentally	used	the
wrong	committer	name	at	one	point,	perhaps	because	you	had
GIT_COMMITTER_NAME	set	and	forgot	to	change	it	for	this	repository	with	git
config user.name:

$ git log --format='%h %an'

...

0922daf4 Richard E. Silverman

6426690c Richard E. Silverman

03f482d6 Bozo the Clown

27e9535f Richard E. Silverman

78d481d3 Richard E. Silverman

...

Git	has	a	command,	git replace,	which	allows	you	to	perform	“commit
surgery”	by	replacing	any	commit	with	a	different	one,	without	disturbing	the
commits	around	it.	Now,	your	first	instinct	at	this	point	should	be	to	say,	“That’s
impossible”;	we’ve	explained	before	that	because	commits	point	to	their	parents,
it’s	impossible	to	alter	a	commit	that	has	children	without	recursively	altering	all
commits	after	that	point	in	the	history	as	well.	That’s	still	true,	and	git replace
is	actually	a	trick,	as	we’ll	see.

To	fix	commit	03f482d6,	we	first	check	it	out	and	amend	it	with	the	correct
author	name,	creating	the	new	commit	we	want	to	use	as	a	replacement:

$ git checkout 03f482d6

Note: checking out '03f482d6'.

You are in 'detached HEAD' state...

$ git commit --amend --reset-author -C HEAD

[detached HEAD 42627abe] add big red nose

...

Now	we	have	a	new	commit,	42627abe,	which	has	the	same	content	and	parents
as	the	faulty	commit	(and	now,	the	correct	author	name).	It	is	sitting	off	to	the
side	on	the	commit	graph	shown	in	Figure	10-6.

Figure	10-6.	Replacing	a	commit

And	now	we	just	need	to	get	commit	6426690c	to	“believe”	that	it	has	42627abe
as	a	parent	instead	of	03f482d6.	The	magic	command	is:

$ git replace 03f482d6 42627abe

And	now,	after	returning	to	the	original	location	(say,	master),	we	see	this:

$ git log --format='%h %an'

...

0922daf4 Richard E. Silverman

6426690c Richard E. Silverman

03f482d6 Richard E. Silverman

27e9535f Richard E. Silverman

78d481d3 Richard E. Silverman

...

This	is,	quite	simply,	a	lie.	This	log	claims	that	commit	03f482d6	now	has	a
different	author	but	the	same	commit	ID,	which	is	effectively	impossible.	What
has	happened	is	that	git replace	manages	a	list	of	object	replacements,
recorded	in	the	namespace	refs/replace;	the	name	of	a	ref	there	is	the	ID	of	an
object	to	replace,	and	its	referent	is	the	ID	of	the	replacement:

$ git show-ref | grep refs/replace

42627abe6d4b1e19cb55… refs/replace/03f482d654930f7aa1…

While	Git	operates,	whenever	it	retrieves	the	contents	of	an	object	in	the	object
database	it	checks	the	replacement	list	first,	and	silently	substitutes	the	contents
of	the	replacement	object,	if	any.	Thus,	in	the	preceding	example,	Git	still
displays	the	original	commit	ID,	but	shows	the	corrected	author	(which	is	in	the
content	of	the	replacement	commit).

Keeping	It	Real
The	replacement	list	is	an	artifact	of	your	repository;	it	alters	your	view	of	the
commit	graph,	but	not	the	graph	itself.	If	you	were	to	clone	this	repository	or
push	to	another	one,	the	replacement	would	not	be	visible	there.	To	make	it
“real,”	we	have	to	actually	rewrite	all	the	subsequent	commits,	which	you	can	do
thus:

$ git filter-branch -- --all

but	see	the	next	section	on	git filter-branch	for	more	on	that	command.

The	usual	workflow	with	this	feature,	then,	is	as	follows:

1.	 Use	git replace	to	make	the	commit	graph	appear	as	you	want	it.

2.	 Use	git filter-branch	to	reify	the	change.

3.	 Push	the	changes	elsewhere,	if	necessary.

You	probably	don’t	want	to	push	while	you	have	replacements	in	force,	since
you	don’t	really	know	what	you’re	pushing!

NOTE

There	is	an	older	Git	feature	called	“grafts”	that	does	something	similar;	you	edit	the	file
.git/info/grafts	to	contain	directives	explicitly	altering	the	parent	list	for	given	commits.	It’s
harder	to	use,	though,	and	is	supplanted	by	git replace.

WARNING

git replace	affects	only	the	commit	you	replace;	even	when	you	apply	the	replacement	with
git filter-branch,	changes	you	make	to	the	content	(tree)	of	a	commit	do	not	ripple
through	to	child	commits.	For	example,	suppose	in	the	amended	commit	earlier	you	had
deleted	a	file	as	well	as	fixed	the	author	name.	You	might	expect	that	this	would	cause	that	file
to	disappear	from	the	entire	history	starting	at	that	point,	but	it	would	not;	instead,	it	would
simply	reappear	in	subsequent	commits,	since	you	did	not	change	the	trees	of	those	commits.
Use	git rebase -i	to	effect	such	changes.

The	Big	Hammer:	git	filter-branch
git filter-branch	is	the	most	general	tool	for	altering	the	history	of	a
repository.	It	walks	the	portion	of	the	commit	graph	you	specify	(by	default,	the
current	branch),	applying	various	filters	you	supply	and	rewriting	commits	as
necessary.	You	can	use	it	to	make	wholesale	programmatic	alterations	to	the
entire	history.	Since	this	is	an	advanced	command,	we	will	just	sketch	its
operation	and	refer	the	reader	to	git-filter-branch(1)	for	more	detail.

You	can	apply	the	following	filters,	whose	string	arguments	are	passed	to	the
shell.	When	they	run,	the	environment	contains	the	following	variables	reflecting
the	commit	being	rewritten:

GIT_COMMIT	(commit	ID)

GIT_AUTHOR_NAME

GIT_AUTHOR_EMAIL

GIT_AUTHOR_DATE

GIT_COMMITTER_NAME

GIT_COMMITTER_EMAIL

GIT_COMMITTER_DATE

The	filters	are:

--env-filter
Modifies	the	environment	in	which	the	commit	will	happen	(e.g.,	you	can
change	the	author	name	by	setting	and	exporting	GIT_AUTHOR_NAME).

--tree-filter
Modifies	commit	contents	by	altering	the	working	tree.	Git	treats	the
resulting	tree	as	if	you	had	run	git add -Af,	reflecting	all	new	and	deleted
files	while	ignoring	the	usual	“ignore”	rules	in	.gitignore	and	so	on.

--index-filter
Modifies	commit	contents	by	altering	the	index.	If	you	can	effect	the	changes
you	want	solely	by	manipulating	the	index,	then	this	is	much	faster	than	--
tree-filter	since	it	does	not	have	to	check	out	the	working	tree.	We	give
an	example	of	this	in	Expunging	Files.

--parent-filter
Modifies	the	commit’s	parent	list,	transforming	the	list	from	stdin	to	stdout.
The	list	is	in	the	format	specified	by	git-commit-tree(1).

--msg-filter
Modifies	the	commit	message,	transforming	the	message	from	stdin	to
stdout.

--commit-filter
Git	runs	this	instead	of	the	normal	git commit-tree	to	actually	perform	the
commit.

--tag-name-filter
Transforms	the	names	of	tags	pointing	to	rewritten	objects	from	stdin	to
stdout.

The	value	of	this	option	is	not	a	shell	command,	but	rather	a	directory	name:

--subdirectory-filter
Consider	only	history	relevant	to	the	given	directory,	and	rewrite	pathnames
to	make	it	the	new	project	root.	This	creates	a	new	history	containing	only
files	in	that	directory,	with	it	as	the	new	top	of	the	repository.

As	a	hedge	against	mistakes,	git filter-branch	stores	the	original	branch	refs
in	the	namespace	refs/original	(which	you	can	change	with	--original).	It
will	refuse	to	overwrite	existing	original	refs	without	--force.

The	arguments	to	git filter-branch	are	interpreted	as	by	git rev-list,
selecting	the	commits	to	be	visited;	to	use	arguments	beginning	with	hyphens,
separate	them	from	the	filter-branch	options	with	--	as	usual.	For	example,	the
default	argument	is	HEAD,	but	you	can	rewrite	all	branches	with	one	command:
git filter-branch -- --all.

It	does	not	make	sense	to	specify	commits	to	rewrite	by	commit	ID:

$ git filter-branch 27e9535f

Which ref do you want to rewrite?

because	when	done,	git filter-branch	needs	to	update	an	existing	ref	to
point	to	the	rewritten	branch.	Ordinarily,	you	will	give	a	branch	name.	If	you
limit	the	commit	range	using	the	negation	of	a	ref,	such	as	master..topic
(equivalent	to	^master topic),	then	only	the	refs	mentioned	in	the	positive
sense	will	be	updated;	here,	Git	will	visit	the	commits	on	topic	that	are	not	on
master,	but	update	only	the	topic	branch	when	done.

Examples

Expunging	Files
Suppose	you	discover	that	you	have	accidentally	littered	your	history	with	some

cruft,	such	as	*.orig	and	*.rej	files	from	patching,	or	*~	backup	files	from
Emacs.	You	can	expunge	all	such	files	from	your	entire	project	history	with	this
command:

$ git filter-branch --index-filter 'git rm -q --cached --ignore-unmatch *.orig *.rej

*~' -- --all

You	might	then	add	these	patterns	to	your	ignore	rules,	to	prevent	this	from
happening	again.

Shifting	to	a	Subdirectory
This	recipe	(using	bash	syntax)	shifts	the	root	of	the	current	project	into	a
subdirectory	named	sub:

$ git filter-branch --index-filter 'git ls-files -s | perl -pe "s-\\t-$&sub/-" |

GIT_INDEX_FILE=$GIT_INDEX_FILE.new git update-index --index-info && mv

"$GIT_INDEX_FILE.new" "$GIT_INDEX_FILE"' HEAD

This	is	adapted	from	an	example	in	git-filter-branch(1),	but	using	Perl	instead	of
sed	for	better	portability	(the	original	does	not	work	with	BSD-style	sed
commands,	such	as	the	one	in	OS	X).	It	works	by	rewriting	the	output	of	git
ls-files	like	so:

100644 6b1ad9fa764e36… 0 bar

100644 e69de29bb2d1d6… 0 foo/bar

which	becomes:

100644 6b1ad9fa764e36… 0 sub/bar

100644 e69de29bb2d1d6… 0 sub/foo/bar

and	updating	the	index	accordingly	for	each	commit.	You	can	use	this	on	a	clone
of	the	source	repository	in	the	git rebase	recipe	given	earlier,	to	import	one
repository	history	into	a	subdirectory	of	another.

Updating	Tags
In	Commit	Surgery:	git	replace,	we	said	to	use	git filter-branch	to	apply

object	replacements	made	with	git	replace	to	the	commit	graph.	There	is	a
problem	with	this	as	given,	though:	it	breaks	any	existing	tags	pointing	to
rewritten	commits,	since	they	remain	untouched	and	continue	to	point	to	the	old
commits	no	longer	on	the	rewritten	branches.	You	can	avoid	this	like	so:

$ git filter-branch --tag-name-filter cat -- --all

Since	--tag-name-filter	rewrites	tag	names	from	stdin	to	stdout,	cat	acts	as
the	identity	filter	and	has	Git	rewrite	all	tags	with	their	existing	names
unchanged	as	needed.

WARNING

This	will	strip	GnuPG	signatures	from	the	rewritten	tags	and	commits.

Notes
Keep	in	mind	when	importing	history	in	these	ways,	that	while	Git	preserves	the
author	timestamps	in	rewritten	commits,	git log	orders	its	output	by	the
commit	timestamps,	which	will	be	new.	The	new	history	may	thus	show	commits
in	an	unexpected	order.	This	is	correct	though:	the	commit’s	content	was	created
at	one	time,	and	that	content	was	then	committed	to	another	repository	at	a	later
time.	Unfortunately,	git log	does	not	have	an	option	to	order	by	author
timestamp	instead.

Chapter	11.	Understanding
Patches

A	“patch”	is	a	compact	representation	of	the	differences	between	two	files,
intended	for	use	with	line-oriented	text	files.	It	describes	how	to	turn	one	file
into	another,	and	is	asymmetric:	the	patch	from	file1	to	file2	is	not	the	same	as
the	patch	for	the	other	direction	(it	would	say	to	delete	and	add	opposite	lines,	as
we	will	see).	The	patch	format	uses	context	as	well	as	line	numbers	to	locate
differing	file	regions,	so	that	a	patch	can	often	be	applied	to	a	somewhat	earlier
or	later	version	of	the	first	file	than	the	one	from	which	it	was	derived,	as	long	as
the	applying	program	can	still	locate	the	context	of	the	change.

The	terms	“patch”	and	“diff”	are	often	used	interchangeably,	although	there	is	a
distinction,	at	least	historically.	A	diff	only	need	show	the	differences	between
two	files,	and	can	be	quite	minimal	in	doing	so.	A	patch	is	an	extension	of	a	diff,
augmented	with	further	information	such	as	context	lines	and	filenames,	which
allow	it	to	be	applied	more	widely.	These	days,	the	Unix	diff	program	can
produce	patches	of	various	kinds.

Here’s	a	simple	patch,	generated	by	git diff:

diff --git a/foo.c b/foo.c

index 30cfd169..8de130c2 100644

--- a/foo.c

+++ b/foo.c

@@ -1,5 +1,5 @@

 #include <string.h>

 int check (char *string) {

- return !strcmp(string, "ok");

+ return (string != NULL) && !strcmp(string, "ok");

 }

Breaking	this	into	sections:

diff --git a/foo.c b/foo.c

This	is	the	Git	diff	header;	diff --git	isn’t	a	literal	command,	but	rather	just
suggests	the	notion	of	a	Git-specific	diff	in	Unix	command	style.	a/foo.c	and
b/foo.c	are	the	files	being	compared,	with	added	leading	directory	names	a	and	b
to	distinguish	them	in	case	they	are	the	same	(as	they	are	here;	this	patch	shows
the	changes	from	one	version	to	another	of	the	same	file).	To	generate	this	patch,
I	changed	the	file	foo.c	and	ran	git diff,	which	shows	the	unstaged	changes
between	the	working	tree	and	the	index.	There	are	in	fact	no	directories	named	a
and	b	in	the	repository;	they	are	just	convention:

index 30cfd169..8de130c2 100644

This	is	an	extended	header	line,	one	of	several	possible	forms,	though	there	is
only	one	in	this	patch.	This	line	gives	information	from	the	Git	index	regarding
this	file:	30cfd169	and	8de130c2	are	the	blob	IDs	of	the	A	and	B	versions	of	the
file	contents	being	compared,	and	100644	are	the	“mode	bits,”	indicating	that
this	is	a	regular	file:	not	executable	and	not	a	symbolic	link	(the	use	of	..	here
between	the	blob	IDs	is	just	as	a	separator	and	has	nothing	to	do	with	its	use	in
naming	either	sets	of	revs	or	for	git diff).	Other	header	lines	might	indicate
the	old	and	new	modes	if	that	had	changed,	old	and	new	filenames	if	the	file
were	being	renamed,	etc.

The	blob	IDs	are	helpful	if	this	patch	is	later	applied	by	Git	to	the	same	project
and	there	are	conflicts	while	applying	it.	If	those	blobs	are	in	the	object	database,
then	Git	can	use	them	to	perform	a	three-way	merge	with	those	two	versions	and
the	working	copy,	to	help	you	resolve	the	conflicts.	The	patch	still	makes	sense
to	other	tools	besides	Git;	they	will	just	ignore	this	line	and	not	be	able	to	use	the
extra	information:

--- a/foo.c

+++ b/foo.c

This	is	the	traditional	“unified	diff”	header,	again	showing	the	files	being
compared	and	the	direction	of	the	changes,	which	will	be	shown	later:	minus
signs	will	show	lines	in	the	A	version	but	missing	from	the	B	version;	and	plus
signs,	lines	missing	in	A	but	present	in	B.	If	the	patch	were	of	this	file	being

added	or	deleted	in	its	entirety,	one	of	these	would	be	/dev/null	to	signal	that:

@@ -1,5 +1,5 @@

 #include <string.h>

 int check (char *string) {

- return !strcmp(string, "ok");

+ return (string != NULL) && !strcmp(string, "ok");

 }

This	is	a	difference	section,	or	“hunk,”	of	which	there	is	just	one	in	this	diff.	The
line	beginning	with	@@	indicates	by	line	number	and	length	the	positions	of	this
hunk	in	the	A	and	B	versions;	here,	the	hunk	starts	at	line	1	and	extends	for	5
lines	in	both	versions.	The	subsequent	lines	beginning	with	a	space	are	context:
they	appear	as	shown	in	both	versions	of	the	file.	The	lines	beginning	with
minus	and	plus	signs	have	the	meanings	just	mentioned:	this	patch	replaces	a
single	line,	fixing	a	common	C	bug	whereby	the	program	would	crash	if	this
function	were	passed	a	null	pointer	as	its	string	argument.

A	single	patch	file	can	contain	the	differences	for	any	number	of	files,	and	git
diff	produces	diffs	for	all	altered	files	in	the	repository	in	a	single	patch	(unlike
the	usual	Unix	diff	command,	which	requires	extra	options	to	recursively
process	whole	directory	trees).

Applying	Plain	Diffs
If	you	save	the	output	of	git diff	to	a	file	(e.g.,	with	git diff > foo.patch),
you	can	apply	it	to	the	same	or	a	similar	version	of	the	file	elsewhere	with	git
apply,	or	with	other	common	tools	that	handle	diff	format,	such	as	patch
(although	they	won’t	be	able	to	use	any	extra	Git-specific	information	in	the
diff).	This	is	useful	for	saving	a	set	of	uncommitted	changes	to	apply	to	a
different	set	of	files,	or	for	transmitting	any	set	of	changes	to	someone	else	who
is	not	using	Git.

You	can	use	the	output	of	git show commit	as	a	patch	representing	the	changes
for	a	given	nonmerge	commit,	as	a	shortcut	for	git diff commit~ commit
(explicitly	comparing	a	commit	and	its	parent).

Patches	with	Commit	Information
There	is	another	patch	format,	specific	to	Git,	that	contains	not	only	patches	for
some	number	of	files,	but	also	commit	metadata:	the	author,	timestamp,	and
message.	This	carries	all	the	information	needed	to	reapply	the	changes	from	one
commit	as	a	new	commit	elsewhere,	and	is	useful	for	transmitting	a	commit
when	it	is	not	possible	or	convenient	to	do	so	with	the	usual	Git	push/pull
mechanism.

You	produce	this	patch	format	with	git format-patch,	and	apply	it	with	git
am.	The	patch	itself	is	actually	in	the	venerable	Unix	mailbox	format,	using	the
email	“from,”	“date,”	and	“subject”	headers	as	the	author,	timestamp,	and
commit	message	subject,	and	the	email	body	as	the	rest	of	the	message.	A
commit	patch	for	the	previous	example	might	look	like	this:

From ccadc07f2e22ed56c546951… Mon Sep 17 00:00:00 2001

From: "Richard E. Silverman" <res@oreilly.com>

Date: Mon, 11 Feb 2013 00:42:41 -0500

Subject: [PATCH] fix null-pointer bug in check()

It is truly a wonder that we continue to write

high-level application software in what is essentially

assembly language. We deserve all the segfaults we

get.

foo.c | 2 +-

1 file changed, 1 insertion(+), 1 deletion(-)

diff --git a/foo.c b/foo.c

...

The	initial	line	contains	the	original	commit	ID,	and	a	fixed	timestamp	meant	to
signal	that	this	“email”	was	produced	by	git format-patch.	The	[PATCH]
prefix	in	the	subject	is	not	part	of	the	commit	message,	but	rather	intended	to
distinguish	patches	among	other	email	messages.	A	diffstat	summary	of	the
patch	comes	next	(which	you	can	suppress	with	--no-stat (-p)),	followed	by
the	patch	itself	in	the	format	shown	earlier.

You	run	git format-patch	like	so:

$ git format-patch [options] [revisions]

The	revisions	argument	can	be	any	expression	specifying	a	set	of	commits	to
format,	as	described	in	Chapter	8.	As	an	exception,	however,	a	single	commit	C
means	C..HEAD,	i.e.,	the	commits	on	the	current	branch	not	contained	in	C	(if	C
is	on	this	branch,	these	are	the	commits	made	since	C).	To	get	the	other	meaning
instead—that	is,	all	commits	reachable	from	C—use	the	--root	option.

By	default,	Git	writes	patches	for	the	selected	commits	into	sequentially
numbered	files	in	the	current	directory,	with	names	reflecting	the	commit
message	subject	lines	like	so:

0001-work-around-bug-with-DNS-KDC-location.patch

0002-use-DNS-realm-mapping-even-for-local-host.patch

0003-fix-AP_REQ-authenticator-bug.patch

0004-add-key-extraction-to-kadmin.patch

The	leading	numbers	in	the	filenames	makes	it	easy	to	apply	these	patches	in
order	with	git am *.patch,	since	the	shell	will	sort	them	lexicographically
when	expanding	the	wildcard.	You	can	give	a	different	output	directory	with	--
output-directory (-o),	or	write	the	patches	all	to	standard	output	with	--
stdout;	git am	reads	from	standard	input	if	given	no	file	arguments	(or	a	single
hyphen	as	the	only	argument,	git am -).

git format-patch	takes	a	number	of	other	options	for	controlling	the	resulting
email	format,	such	as	adding	other	mail	headers,	as	well	as	many	options	taken
by	git diff	to	affect	the	diff	itself;	see	git-format-patch(1)	and	git-diff(1)	for
more	detail.	Also	see	Importing	Linear	History	for	some	examples.

Chapter	12.	Remote	Access

As	mentioned	in	Chapter	6,	Git	can	access	remote	repositories	for	push	and	pull
using	different	network	protocols;	the	most	common	are	HTTP(S),	SSH,	and	the
native	Git	protocol.	Especially	if	the	remote	repository	accepts	push	requests,	the
access	protocol	may	require	you	to	identify	yourself	in	order	to	grant	access;	this
is	called	“authentication,”	and	may	be	accomplished	in	various	ways,	such	as	by
providing	a	username	and	password.	The	Git	protocol	does	not	support
authentication,	so	this	is	usually	done	via	HTTP	or	SSH;	the	native	Git	server,
accessed	on	port	9418	with	the	URL	scheme	git://,	is	used	almost	exclusively
for	read-only	access	to	repositories	(for	which	it	is	a	good	choice,	since	it	is	fast
and	easy	to	set	up).

The	question	of	how	to	configure	the	server	side	for	these	protocols	generally	is
well	beyond	the	scope	of	this	text;	entire	books	have	been	written	on	SSH,	the
Apache	web	server,	the	Windows	IIS	web	server,	etc.	However,	we	will	touch	on
a	few	common	cases	from	the	client	perspective,	and	on	some	Git	features	that
help	with	this.

SSH
When	you	access	a	repository	with	a	URL	of	the	form:

[user@]host:path/to/repository

Git	runs	ssh,	or	the	program	given	by	the	environment	variable	GIT_SSH,	to	log
into	the	remote	host	and	access	the	repository	by	running	the	appropriate	remote
command:	git upload-pack	for	pull,	and	git receive-pack	for	push.	The
local	and	remote	Git	programs	then	communicate	over	the	SSH	channel	to
perform	the	requested	operation.	For	example,	when	asked	to	pull	from	the
repository	dieter@sprockets.tv:dance/monkey,	Git	runs	this	command:

ssh dieter@sprockets.tv git-upload-pack dance/monkey

This	logs	into	the	host	sprockets.tv	with	the	username	dieter,	and	runs	the
remote	command	git-upload-pack dance/monkey.	If	the	host	is	Unix,	usually
this	means	that	there	must	be	a	user	account	named	dieter	on	that	host,	git-
upload-pack	must	be	in	the	program-search	path	on	the	remote	side	(the	PATH
environment	variable),	and	the	remote	repository	must	be	in	a	subdirectory	of
the	dieter	account’s	home	directory	named	dance/monkey.	You	can	refer	to	any
directory	to	which	the	remote	account	has	access	by	using	a	complete	pathname
with	a	leading	slash	(e.g.,	host:/var/lib/git/foo.git).

SSH	will	prompt	you	for	a	password	if	necessary,	but	it	may	be	very
inconvenient	to	do	this	repeatedly,	so	you	may	want	some	form	of	automatic
authentication	for	this	connection:	a	method	by	which	you	can	type	your
passphrase	just	once	and	allow	many	subsequent	Git	commands.	There	are
several	different	options	for	this,	but	the	most	common	is	SSH	public-key
authentication.

WARNING

All	the	details	we	are	about	to	give	regarding	SSH	assume	the	simplest	scenario:	the	Unix
OpenSSH	software	on	both	client	and	server	in	the	most	usual,	plain	configuration.	Although
this	is	very	common,	any	or	all	of	these	may	be	entirely	different	depending	on	the	operating
systems,	SSH	software,	and	system	configurations	involved.	Similarly,	SSH	by	itself	and
security	in	general	are	complex	topics.	There	are	many	different	ways	of	accomplishing	even
this	simple	task,	with	varying	implications	with	regard	to	security,	and	this	simple	example	is
not	meant	to	endorse	any	particular	one.	When	in	doubt,	consult	a	security	expert	or	the
sysadmins	of	the	hosts	in	question.

You	can	generate	a	new	SSH	public	key	thus	if	you	don’t	already	have	one:

$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in .ssh/id_rsa.

Your public key has been saved in .ssh/id_rsa.pub.

...

The	“passphrase”	is	just	another	name	for	a	password,	emphasizing	the	fact	that
you	can	use	an	entire	phrase	with	spaces	and	punctuation,	not	just	a	single	word.
You	should	generally	not	just	leave	this	blank;	that	means	that	anyone	who	gets
hold	of	the	private	key	file	id_rsa	will	have	access	to	any	SSH	accounts
protected	with	this	key.	It’s	like	putting	your	password	in	a	file;	don’t	do	it
unless	you	really	know	what	you’re	doing	(or	really	don’t	care	about	security).

You	then	send	your	public	key—the	contents	of	the	file	~/.ssh/id_rsa.pub—to
the	server	administrator,	asking	him	to	authorize	your	key	for	login	to	the	remote
account;	this	usually	means	placing	it	in	~/.ssh/authorized_keys	in	the	home
directory	of	the	account,	with	appropriate	ownership	and	permissions.	When	this
is	done,	SSH	will	prompt	you	for	the	key	passphrase	instead:

$ git pull

Enter passphrase for key '/home/res/.ssh/id_rsa':

Enter	your	passphrase	to	test	whether	the	setup	is	working	correctly—though	so
far	this	is	not	much	of	an	improvement	in	convenience;	you’re	still	being
prompted	to	enter	something	for	every	Git	command	accessing	the	remote
repository.	The	final	step	is	to	use	the	SSH	“agent”	to	get	automatic
authentication:

Test whether you have a running agent.

$ ssh-add -l >& /dev/null; [$? = 2] && echo no-agent

no-agent

If not, start one.

$ eval $(ssh-agent)

Now, add your key to the agent.

$ ssh-add

Enter passphrase for /home/res/.ssh/id_rsa:

Identity added: /home/res/.ssh/id_rsa (.ssh/id_rsa)

On	some	modern	Unix-based	systems,	you	may	not	have	to	do	any	of	this—for
example,	OS	X	starts	an	SSH	agent	for	you	when	you	log	in,	and	SSH	prompts
you	for	your	key	passphrase	with	a	graphical	dialog	box	and	automatically	adds
it	to	the	agent	on	first	use.

Once	your	key	is	loaded	in	the	agent,	you	should	be	able	to	use	Git	to	access	this
repository	without	giving	your	passphrase,	for	the	duration	of	your	current	login
session	on	the	client	computer.

NOTE

You	can	also	use	this	style	of	URL	for	SSH:

ssh://[user@]host/path/to/repository

A	distinction	to	keep	in	mind	is	that,	unlike	the	earlier	style,	the	path	given	here	is	not	relative
to	the	remote	account’s	home	directory,	but	rather	is	absolute.	You	can	get	a	relative	path	by
prefixing	the	path	with	~.	For	example:

ssh://host/~/path/under/homedir

although	this	may	depend	on	the	shell	used	by	the	remote	account.

HTTP
A	web	server	providing	access	to	a	Git	repository	may	also	be	set	to	require
authentication.	Although	more	sophisticated	mechanisms	are	available,
including	Kerberos	and	public-key	certificates,	the	most	common	approach	with
HTTP	is	still	to	require	a	simple	username	and	password.	This	complicates
automatic	authentication,	but	Git	has	its	own	framework	for	managing	and
providing	such	credentials.

Storing	Your	Username
You	can	include	the	username	in	an	HTTP	URL	in	the	same	way	as	with	SSH:

https://dieter@sprockets.tv/...

But	you	can	also	set	it	separately,	like	so:

$ git config --global

credential.'https://sprockets.tv/'.username dieter

Storing	Your	Password
Git	has	a	mechanism	called	“credential	helpers,”	which	stores	passwords	in
various	ways	for	more	convenient	use.	One	such	helper,	named	cache,	is	similar

to	ssh-agent	and	caches	your	password	in	memory	for	use	by	Git.	It	is	not	used
by	default;	to	enable	it,	do:

$ git config --global credential.helper cache

Once	you	do	this,	Git	should	prompt	you	only	once	in	a	given	login	session	for
the	password	associated	with	any	particular	URL;	when	you	provide	it,	Git
stores	it	in	the	running	credential	cache	agent,	and	subsequent	commands
automatically	obtain	it	from	there.	If	you	look,	you	can	see	the	agent	process:

$ ps -e | grep git-cred | grep -v grep

33078 ttys001 0:00.01 git-credential-cache--daemon /home/res/.git-credential-

cache/socket

Git	communicates	with	the	agent	via	the	socket	shown	on	the	agent	command
line.

There	is	another	standard	credential	helper	named	store,	which	simply	stores
the	password	in	a	file	on	disk	(~/.git-credentials).	You	shouldn’t	do	this	for
interactive	use,	but	it	is	appropriate	for	automated	processes	that	need	to	run	Git
and	use	password	authentication,	so	long	as	adequate	care	is	taken	in	protecting
the	host	system	and	setting	permissions	on	that	file.	You	can	also	use	the	cache
helper	with	automated	processes	if	that	level	of	security	is	not	enough,	but	a
human	will	have	to	enter	the	password	once	after	the	machine	boots	in	order	to
add	it	to	the	cache,	so	this	is	not	the	right	approach	if	the	system	in	question
must	be	able	to	start	unattended.

The	Git	credential	mechanism	is	extensible,	and	there	are	third-party	helpers
available	that	connect	with	platform-specific	security	features.	For	example,	the
helper	osxkeychain	stores	passwords	in	the	OS	X	“keychain,”	the	standard
credential	manager	for	the	Mac.	It	is	included	with	the	versions	of	Git	installed
by	the	Apple	Xcode	developer	tools	or	by	MacPorts.	Just	enable	it	with:

$ git config --global credential.helper osxkeychain

and	it	should	work	automagically.	You	can	use	the	Keychain	application	to
verify	that	Git	is	indeed	storing	its	credentials	there.

http://www.macports.org/

References
For	more	detail,	see:
gitcredentials(7)

git-credential-cache(1)

git-credential-store(1)

Chapter	13.	Miscellaneous

In	this	chapter,	we	cover	some	Git	commands	and	topics	that	don’t	fit	easily	into
any	of	the	foregoing	discussions.

git	cherry-pick
git cherry-pick	allows	you	to	apply	the	changeset	of	a	given	commit	as	a
new	commit	on	the	current	branch,	preserving	the	original	author	information
and	commit	message.	As	a	very	general	rule,	it’s	best	to	avoid	this	in	favor	of
factoring	your	work	so	that	a	commit	appears	in	one	place	and	is	incorporated	in
multiple	branches	via	merging	instead,	but	that	isn’t	always	possible	or	practical.
Any	arrangement	of	branches	and	merge	discipline	favors	a	certain	flow	of
changes,	and	sometimes	you	need	to	buck	that	flow.	For	example,	you	might
discover	that	a	bug	fix	applied	to	a	certain	version	actually	needs	to	be	applied	to
an	earlier	one	as	well,	and	merging	in	that	direction	is	not	desirable.	Or,	suppose
you	have	your	own	repository	for	holding	local	changes	made	to	your	Unix
distribution’s	derivative	of	some	open	source	project,	such	as	Apache	or
OpenLDAP	as	modified	and	repackaged	by	Red	Hat	or	Debian.	If	there	is	an
upstream	feature	you	need	that	the	distribution	does	not	provide	(and	they	use
Git),	you	can’t	just	merge	it	in,	as	your	repository	is	not	a	clone	of	theirs—but
you	may	be	able	to	apply	the	relevant	commits	individually	by	cherry-picking.

The	argument	to	git cherry-pick	is	a	set	of	commits	to	apply,	using	the
syntax	described	in	Chapter	8.	Some	options:

--edit	(-e)
Edit	the	commit	message	before	committing.

-x
Append	to	the	commit	message	a	line	indicating	the	original	commit.	Only
use	this	if	that	commit	is	publicly	available;	if	you’re	cherry	picking	from	a
private	branch,	then	this	information	is	not	useful	to	others.

--mainline n	(-m)
For	merge	commits,	compute	the	changeset	for	the	new	commit	relative	to
the	nth	parent	of	the	original.	This	is	required	to	cherry	pick	merge	commits
at	all,	since	otherwise	it	is	not	clear	what	set	of	changes	should	be	replicated.

--no-commit	(-n)
Apply	the	patch	to	the	working	tree	and	index,	but	do	not	commit.	You	can
use	this	to	take	the	commit’s	changes	as	a	starting	point	for	further	work,	or
to	squash	the	effect	of	several	cherry	picked	commits	into	a	single	one.

--stdin
Take	the	commit	list	from	standard	input.

As	with	other	commands	that	apply	patches,	git cherry-pick	can	fail	if	a
patch	does	not	apply	cleanly,	and	it	uses	the	merge	machinery	in	that	case,
recording	conflicts	in	the	index	and	working	files	in	the	usual	way.	It	then
prompts	you	to	use	the	options	--{continue,quit,abort}	to	continue	after
resolving	the	conflicts,	skip	the	current	commit,	or	abort	the	whole	cherry	pick,
similar	to	git rebase.

git	notes
Since	commits	are	immutable,	you	can’t	add	to	a	commit	message	once	you’ve
made	it	(and	you	can’t	replace	a	commit	you’ve	pushed	without	causing	woe	for
others).	git notes	provides	a	way	to	annotate	commits	for	yourself	later	on
while	avoiding	this	difficulty.

The	set	of	notes	for	your	repository	is	maintained	on	a	branch	named
refs/notes/commits,	in	the	following	fashion:	to	find	the	notes	for	a	commit,
Git	looks	up	its	40-digit	hex	commit	ID	as	a	pathname	in	the	tree	of	the	current
notes	commit	(tip	of	the	notes/commits	branch);	if	present,	that	points	to	a	blob
that	contains	the	text	of	the	note.	When	you	add	or	remove	a	note,	Git	simply
commits	the	corresponding	change	to	the	notes	branch	(so	you	can	see	the
history	of	your	notes	with	git log notes/commits).

Though	normally	used	to	annotate	commits,	notes	can	in	fact	be	attached	to	any
Git	object.

git	notes	Subcommands
You	can	use	the	-f	option	generally	to	override	a	complaint,	such	as	to	replace
existing	notes.	A	missing	object	argument	defaults	to	HEAD,	except	where	noted
otherwise:

git notes list [object]
List	the	notes	for	object	by	ID,	or	all	notes	with	no	object.	A	plain	git
notes	invokes	this	subcommand.

git notes {add,append,edit} [object]
Add	a	note	for	object,	or	edit	or	append	to	an	existing	note.

git notes copy first second
Copy	the	note	from	one	object	to	another.

git notes show [object]
Display	the	note	for	object.

git notes remove [object]
Delete	the	note	for	object.

You	can	specify	a	notes	ref	other	than	notes/commits	with	the	--ref	option;
the	argument	is	taken	to	be	in	refs/notes	if	unqualified.	You	can	use	this
feature	to	have	different	categories	of	notes;	perhaps	notes	on	different	subjects,
or	from	different	people	(e.g.,	git notes --ref=bugs).

Initially,	git notes	seemed	mostly	geared	toward	private	use;	there	was	no
explicit	support	for	merging	notes	from	other	sources.	Recent	Git	versions	have
added	a	git notes merge	command,	and	this	is	improving;	see	git-notes(1)	for
the	current	status	of	that	as	well	as	other	options.

git	grep
git grep	lets	you	search	your	repository	content	using	regular	expressions:	not
only	the	working	tree,	but	also	the	index	or	any	commit	in	the	history	without
having	to	check	it	out.	You	can	even	use	it	outside	a	Git	repository,	as	a	more
powerful	version	of	the	usual	Unix	grep	command.

Combining	Regular	Expressions
Instead	of	a	single	regular	expression,	git grep	can	handle	Boolean
combinations	of	expressions,	combined	with	the	options	--{and,or,not}	in
infix	notation	(“or”	is	the	default	connective;	“and”	binds	more	tightly	than	“or”;
use	parentheses	for	grouping,	which	you	may	have	to	escape	to	protect	from
your	shell).	In	this	usage,	patterns	are	preceded	by	-e.	For	example:

$ git grep -e '^#define' --and \(-e AGE_MAX -e MAX_AGE \)

This	finds	lines	that	begin	with	#define	and	contain	either	AGE_MAX	or	MAX_AGE;
thus,	it	finds	both	#define	AGE_MAX	and	#define MAX_AGE.

NOTE

“Infix	notation”	means	placing	binary	connectives	between	their	arguments,	rather	than	in
front	of	them	in	function-call	style;	thus	foo --and bar --or baz,	rather	than	--and (foo
(--or bar baz)).

What	to	Search
By	default,	git grep	searches	tracked	files	in	the	working	tree,	or	given	commit
or	tree	objects.	The	given	objects	must	be	listed	individually;	you	cannot	use
range	expressions	such	as	master..topic.	You	can	add	path	limiters	to	restrict
the	files	searched	to	those	matching	at	least	one	glob-style	pattern.	For	example:

$ git grep pattern HEAD~5 master -- '*.[ch]' README

Other	options:

--untracked
Include	untracked	files;	add	--no-exclude-standard	to	skip	the	usual
“ignore”	rules

--cached
Search	the	index	(that	is,	all	blobs	registered	as	files	in	the	index)

--no-index
Search	the	current	directory	even	if	it’s	not	part	of	a	Git	repository;	add	--
exclude-standard	to	honor	the	usual	“ignore”	rules

What	to	Show
By	default,	git grep	shows	all	matching	lines,	annotated	with	filename	and
object	as	appropriate.	Other	options	include:

--invert-match	(-v)
Show	nonmatching	lines	instead

-n
Show	line	numbers

-h
Omit	filenames

--count	(-c)
Show	the	number	of	lines	that	match,	rather	than	the	matching	lines
themselves

--files-with-matches	(-l)
Just	list	the	files	containing	matches

--files-without-matches	(-L)
Just	list	the	files	containing	no	matches

--full-name
Show	filenames	relative	to	the	working	tree	top,	rather	than	the	current
directory

--break
Collate	matches	from	the	same	file	and	print	blank	lines	between	resulting
sets

--heading
Show	the	filename	once	before	the	matches	in	that	file,	rather	than	on	each
line

--all-match
With	multiple	patterns	combined	with	“or,”	only	show	files	that	contain	at
least	one	line	matching	each	pattern

How	to	Match

-i	(--regexp-ignore-case)
Ignore	case	differences	(e.g.,	hello	and	HELLO	will	both	match	“Hello”).

-E	(--extended-regexp)
Use	extended	regular	expressions;	the	default	type	is	basic.

-F	(--fixed-strings)
Consider	the	limiting	patterns	as	literal	strings	to	be	matched;	that	is,	don’t
interpret	them	as	regular	expressions	at	all.

--perl-regexp
Use	Perl-style	regular	expressions.	This	will	not	be	available	if	Git	is	not
built	with	the	--with-libpcre	option,	which	is	not	on	by	default.

git	rev-parse

git rev-parse	is	a	plumbing	command,	meant	mainly	for	use	by	other	Git
programs	to	parse	and	interpret	portions	of	Git	command	lines	that	use	common
options	for	specifying	revisions.	You	can	use	it	directly,	though,	and	we’ve
mentioned	it	before	as	a	tool	for	showing	what	a	given	commit	name	spelling
translates	to.	However,	it	also	has	several	useful	options	for	showing	various
properties	of	a	repository,	including:

--git-dir
Show	the	Git	directory	for	the	current	repository

--show-toplevel
Show	the	top	of	the	working	tree

--is-inside-git-dir
Indicate	whether	the	current	directory	is	inside	the	Git	directory

--is-inside-working-tree
Indicate	whether	the	current	directory	is	inside	the	working	tree	of	a
repository

--is-bare-repository
Indicate	whether	the	current	repository	is	bare

git	clean
git clean	removes	untracked	files	from	the	working	tree,	optionally	limited	by
a	glob	pattern	(e.g.,	git clean '*~'	to	remove	backup	files).	Options	include:

--force	(-f)
Really	do	something.	git clean	will	make	no	changes	without	this	flag,
unless	you	set	clean.requireForce	to	false.

--dry-run	(-n)
Show	what	would	be	done,	but	remove	no	files.

--quiet	(-q)
Report	only	errors,	not	the	files	removed.

--exclude=pattern	(-e)
Add	pattern	to	the	“ignore”	rules	in	effect.

-d
Remove	untracked	directories	as	well	as	files.	Directories	that	are	in	turn
other	Git	repositories	will	not	be	removed	unless	you	add	-f -f	(two	“force”
flags).

-x
Skip	the	normal	“ignore”	rules	(but	still	obey	rules	given	with	-e).

-X
Remove	only	ignored	files.

There	is	no	single	git clean	command	that	is	most	common,	really;	it	depends
on	what	you’re	trying	to	do.	For	example,	often	ignored	files	include	compiled
objects	that	are	expensive	to	rebuild,	so	you	don’t	want	to	remove	them	while
cleaning	up	other	untracked	cruft	that	has	accumulated	in	your	working	tree.	On
the	other	hand,	after	you	switch	branches,	you	may	want	to	remove	all	object
files	to	ensure	a	correct	new	build,	as	the	dependencies	in	a	complex	project	as
expressed	by	tools	like	make	or	ant	may	not	handle	such	wholesale	rearranging
of	files	correctly.

git	stash
git stash	saves	your	current	index	and	working	tree,	then	resets	the	working
tree	to	match	the	HEAD	commit	as	git reset	--hard	would	do.	This	allows
you	to	conveniently	set	aside	and	later	restore	your	working	state	so	that	you	can
change	branches,	pull,	or	perform	other	operations	that	would	be	blocked	by
your	current	changes.

The	saved	states	are	arranged	in	a	“stack,”	meaning	that	the	last	state	you	put

into	it	is	the	first	one	you	take	out.	That	is:	if	you	stash	a	state,	make	more
changes,	then	stash	again—when	you	next	restore	a	state,	it	is	the	second	state
that	is	restored,	not	the	first	one.	The	terms	“push”	and	“pop”	used	in	the
commands	below	are	traditional	in	computer	science	for	the	operations	of	adding
and	removing	something	to	and	from	a	stack.	Unlike	a	pure	stack,	however,	the
commands	do	generally	allow	you	to	bypass	the	stack	order	and	directly	address
previous	states,	if	you	want	to.

Subcommands

save
This	is	the	default	subcommand,	saving	the	current	working	state	as	described.
Options	include:

--patch	(-p)
Interactively	select	hunks	to	save,	rather	than	the	complete	diff	between
HEAD	and	the	working	tree.	This	works	the	same	way	as	the	patch	mode	of
git add.

--keep-index
Do	not	revert	changes	already	applied	to	the	index.

--include-untracked	(-u)
Save	untracked	files	(normally	only	tracked	files	are	saved).	This	is	useful	to
save	compilation	artifacts	such	as	object	files,	normally	ignored	and
untracked	but	that	would	be	costly	to	recreate.

You	can	also	give	a	comment	as	an	argument,	to	be	saved	as	the	message	on	the
commit	representing	the	stash	(e.g.,	git stash save "bugfix in
progress").	Otherwise,	Git	generates	a	default	message	like:

WIP on master: 72e25df0 'commit subject'

The	--keep-index	option	is	useful	for	testing	partially	staged	changes	before
you	commit	them.	If	you	use	git add -p	to	split	your	current	worktree	changes
into	multiple	commits	(Adding	Partial	Changes),	you	may	want	to	test	those

commits	first.	git stash save --keep-index	preserves	your	staged	changes
and	reverts	the	rest,	so	that	you	can	test	this	intermediate	state.	You	then	commit,
restore	the	remaining	changes	with	git stash pop,	and	repeat.

list
List	the	stack	of	stashes,	which	can	be	referred	to	symbolically	as	stash@{0},
stash@{1},	and	so	on	(most	recent	first).	You	can	add	options	as	to	git log.

show
Show	the	changes	in	a	given	stash,	as	the	diff	between	the	stash	and	its
corresponding	original	worktree	state.	The	default	is	the	latest	stash
(stash@{0}),	and	you	can	add	options	as	with	git diff.

pop
The	inverse	of	git stash:	restore	a	stashed	state	and	remove	it	from	the	stash
list;	the	default	state	to	use	is	stash@{0},	or	you	can	supply	a	different	stash.	If
the	stash	does	not	apply	cleanly,	this	does	not	remove	the	stash;	use	git stash
drop	after	resolving	the	conflicts.	With	--index,	restores	the	saved	index	as
well	(which	is	otherwise	discarded).

apply
Like	git stash pop,	but	does	not	remove	the	restored	state	from	the	stash	list.

branch	<branchname>	[stash]
Switches	to	new	branch	starting	at	the	original	commit	for	stash,	and	restores
the	stash	there.	This	is	useful	when	the	working	tree	has	changed	such	that	the
stash	no	longer	applies	cleanly.

drop	[stash]
Remove	stash	from	the	stash	list	(default	stash@{0}).

clear
Deletes	the	entire	stash	list.

git	show
git show	displays	a	given	object	(default	HEAD)	in	a	manner	appropriate	to	the
object	type:

commit
Commit	ID,	author,	date,	and	diff

tag
Tag	message	and	tagged	object

tree
Pathnames	in	(one	level	of)	the	tree

blob
Contents

For	example,	to	see	the	diff	from	one	commit	to	the	next,	you	could	use	git
diff foo~ foo,	but	git show foo	is	just	simpler.	The	command	takes	any
options	valid	for	git diff-tree	to	control	display	of	the	diff,	including	-s	to
suppress	the	diff	and	just	show	the	commit	metadata.	You	can	also	use	--format
as	described	in	Defining	Your	Own	Formats	to	customize	the	output.

git	tag
A	Git	tag	gives	a	stable,	human-readable	name	to	a	commit,	such	as	“version-
1.0”	or	“release/2012-08-01”.	There	are	two	kinds	of	tags:

A	“lightweight	tag”	is	just	a	ref	in	refs/tags	pointing	to	the	tagged	commit.

An	“annotated	tag”	is	also	a	ref	in	refs/tags,	but	pointing	to	a	tag-type
object	instead,	which	in	turn	not	only	points	to	the	tagged	commit,	but
records	other	information	as	well:	the	tag	author,	timestamp,	a	tag	message,
and	an	optional	GnuPG	cryptographic	signature.

git tag tagname commit	creates	a	new	lightweight	tag	pointing	to	the	given
commit	(default	HEAD).	Options	include:

--annotate	(-a)
Make	an	annotated	tag	instead

--sign	(-s)
Make	a	signed	tag	(implies	-a),	using	the	GnuPG	key	for	the	committer’s
email	address	or	the	value	of	user.signingkey

--local-user=key-ID	(-u)
Make	a	signed	tag	(implies	-a),	using	the	specified	GnuPG	key

--force	(-f)
Be	willing	to	replace	existing	tags	(this	normally	fails)

--delete	(-d)
Delete	a	tag

--verify	(-v)
Verify	the	GnuPG	signature	on	a	tag

--list pattern	(-l)
List	tags	with	names	matching	pattern.	No	pattern	means	list	all	tags,	and
this	is	the	default	for	a	plain	git tag	command	without	arguments.	Multiple
patterns	means	to	list	tags	matching	at	least	one	pattern.

--contains commit
List	tags	containing	the	given	commit;	that	is,	those	that	have	commit	as	an
ancestor	of	the	tagged	commit

--points-at object
List	tags	that	point	to	the	given	object

--message="text"	(-m)
Use	text	as	the	tag	message	(instead	of	invoking	the	editor).	Multiple	-m

options	are	concatenated	as	paragraphs.	This	implies	an	annotated	tag.

--file=filename	(-F)
Use	the	contents	of	filename	as	the	tag	message	(instead	of	invoking	the
editor);	“-”	means	standard	input.	This	implies	an	annotated	tag.

Deleting	a	Tag	from	a	Remote
Deleting	a	tag	from	your	repository	will	not	automatically	delete	it	from	the
origin	when	pushing;	you	have	to	do	that	explicitly:

$ git push origin :tagname

Following	Tags
When	you	pull	(or	fetch)	from	a	configured	remote,	Git	will	automatically	fetch
new	tags,	but	a	“one-shot”	pull	specifying	the	remote	repository	(git pull URL
branch)	will	not	do	this.	This	rule	tries	to	match	the	likely	desires	of	people	in
the	given	situation.	If	you	are	collaborating	closely	with	a	set	of	people	on	a
project,	you	are	likely	to	want	to	share	tags	with	them,	and	also	likely	to	be	using
the	push/pull	mechanism	with	a	configured	remote.	On	the	other	hand,	if	you
have	to	specify	the	other	repository,	then	you	probably	aren’t	collaborating
closely	over	that	particular	content,	and	so	you	probably	don’t	want	to
automatically	pull	in	the	other	group’s	tags.

In	any	case,	git pull	never	automatically	overwrites	tags.	A	tag	can	represent
sensitive	assertions	about	the	tagged	commit,	such	as	its	being	a	certain	official
release	of	a	product,	or	containing	an	important	security	fix.	Once	accepted,	a
tag	should	not	silently	change	without	the	user	knowing.	If	you	push	out	a
botched	tag,	the	preferred	way	to	fix	it	is	to	simply	use	a	new	tag	name.	Actually
updating	an	already	pushed	tag	is	awkward,	by	design.	See	the	“DISCUSSION”
section	of	git-tag(1)	for	more	detail.

For	new	tags	you	create,	use	git push --tags	to	send	them	when	pushing.

Backdating	Tags
You	can	set	the	tag	date	with	the	GIT_COMMITTER_DATE	environment	variable.

For	example:

$ GIT_COMMITTER_DATE="2013-02-04 07:37" git tag…

git	diff
git diff	is	a	versatile	command,	showing	the	difference	between	content	pairs
in	the	working	tree,	commits,	or	index.	The	following	are	some	common	forms.

git	diff
This	shows	your	unstaged	changes;	that	is,	the	difference	between	the	working
tree	and	the	index.

git	diff	--staged
This	shows	your	staged	changes;	that	is,	the	difference	between	the	latest
commit	and	the	index.	These	are	the	changes	that	will	be	included	in	the	next
commit.	--cached	is	a	synonym	for	--staged.	You	can	give	an	alternate
commit	to	compare	as	an	argument;	the	default	is	HEAD.

git	diff	<commit>
This	shows	the	difference	between	the	working	tree	and	the	named	commit.

git	diff	<A>	
This	shows	the	difference	between	two	commits,	trees,	or	blobs	A	and	B.	A..B	is
a	synonym	for	A B;	note	that	this	has	no	connection	to	the	meaning	of	that
syntax	when	naming	sets	of	commits	(see	Naming	Sets	of	Commits).	If	either	A
or	B	is	omitted	in	A..B,	the	default	is	HEAD;	this	syntax	is	thus	useful	for
specifying	HEAD	for	one	of	these	by	just	typing	two	dots,	which	is	easier	and
faster	than	typing	in	all	caps.

Options	and	Arguments
You	can	limit	the	comparison	to	specific	files	with	trailing	patterns;	for	example,

this	shows	the	unstaged	changes	only	in	Java	and	C	source	files:

$ git diff -- '*.java' '*.[ch]'

git diff	accepts	quite	a	few	options	controlling	how	Git	computes	or	displays
differences,	most	of	which	it	has	in	common	with	git log,	which	we	discuss	in
Chapter	9.	For	example,	this	summarizes	the	differences	instead	of	displaying
them:

$ git diff --stat

 foo.c | 1 +

 icky.java | 1 +

 3 files changed, 3 insertions(+)

and	this	just	lists	the	files	that	contain	differences:

$ git diff --name-only

foo.c

icky.java

git	instaweb
Git	comes	with	a	web-based	repository	browser	called	“gitweb.”	Setting	up	a
standalone	web	server	to	provide	general	access	to	a	set	of	Git	repositories	is
outside	our	scope	here;	however,	Git	has	a	convenience	command	git
instaweb	that	starts	a	special-purpose	web	server	giving	gitweb	access	to	the
current	repository.	Just	start	it	with:

$ git instaweb --start

and	point	your	browser	at	http://localhost:1234/	(assuming	your	browser	is
running	on	the	same	host;	otherwise,	use	the	right	hostname).	Use	--port	to
select	a	different	TCP	port,	and	--stop	to	stop	the	gitweb	server	when	you’re
done.

If	you	type	just	git instaweb,	it	will	start	or	restart	the	gitweb	server,	and	then
launch	a	browser	from	the	command	line	on	the	same	host.	This	may	not	be
what	you	want;	you	might	be	logged	into	that	host	remotely	without	any	way	to

display	graphics	from	it	(e.g.,	a	local	X	Windows	server	combined	with	SSH	X
forwarding),	and	so	Git	will	end	up	starting	a	character-based	browser	such	as
lynx.

By	default,	this	command	uses	the	lighttpd	web	server,	which	must	also	be
installed.	It	supports	several	other	web	servers	as	well,	including	Apache,	which
you	can	select	with	--httpd;	see	git-instaweb(1)	for	details.

Git	Hooks
In	computer	jargon,	a	“hook”	is	a	general	means	of	inserting	custom	actions	at	a
certain	point	in	a	program’s	behavior,	without	having	to	modify	the	source	code
of	the	program	itself.	For	example,	the	text	editor	Emacs	has	many	“hooks”	that
allow	you	to	supply	your	own	code	to	be	run	whenever	Emacs	opens	a	file,	saves
a	buffer,	begins	writing	an	email	message,	etc.	Similarly,	Git	provides	hooks	that
let	you	add	your	own	actions	to	be	run	at	key	points.	Each	repository	has	its	own
set	of	hooks,	implemented	as	programs	in	.git/hooks;	a	hook	is	run	if	the
corresponding	program	file	exists	and	is	executable.	Hooks	are	often	shell
scripts,	but	they	can	be	any	executable	file.	git init	automatically	copies	a
number	of	sample	hooks	into	the	new	repository	it	creates,	which	you	can	use	as
a	starting	point.	These	are	named	hook-name.sample;	rename	one	removing	the
.sample	extension	to	enable	it.	The	sample	hooks	themselves	are	part	of	your	Git
installation,	typically	under	/usr/share/git-core/templates/hooks.	The	templates
directory	also	contains	a	few	other	things	copied	into	new	repositories,	such	as
the	default	.git/info/exclude	file.

For	example,	there	is	a	hook	named	commit-msg,	which	is	run	by	git commit
after	the	user	edits	his	commit	message	but	before	actually	making	the	commit.
The	hook	gets	the	commit	message	in	a	file	as	an	argument,	and	can	edit	the	file
in	place	to	vet	or	alter	the	message.	If	the	hook	exists	with	a	nonzero	status,	Git
cancels	the	commit,	so	you	can	use	this	to	suggest	a	certain	style	of	commit
message.	It’s	only	a	suggestion	though,	because	the	user	can	avoid	hook	with
git commit --no-verify;	it’s	his	repository,	after	all.	You’d	need	a	different
kind	of	hook	on	the	receiving	end	of	a	push	to	enforce	your	style	on	a	shared
repository.

The	githooks(5)	man	pages	describes	in	detail	all	the	different	hooks	you	can

use,	and	how	they	work.

Visual	Tools
Complex	commit	graphs,	file	differences,	and	merge	conflicts	are	best	viewed
graphically,	and	there	are	a	number	of	tools	available	for	this.	Git	itself	includes
gitk,	which	is	written	with	the	Tcl/Tk	language	and	graphics	toolkit,	as	well	as
the	simple	git log	--graph.	Here	are	some	other	useful	tools	in	this	category:

tig
A	terminal-based	tool	using	the	“curses”	library.

QGit
Using	the	QT4	GUI	framework,	QGit	builds	and	runs	essentially	identically
on	multiple	platforms,	including	Linux,	OS	X,	and	Windows.

GitHub
There	is	a	GitHub	application	for	OS	X,	Windows,	and	the	Eclipse
programming	environment.	It	can	work	with	your	own	repositories	as	well	as
with	ones	hosted	on	the	GitHub	service.

SmartGit
SmartGit	runs	on	Linux,	OS	X,	and	Windows,	and	works	with	the	Mercurial
version	control	system	as	well.

Gitbox
Specific	to	OS	X	with	a	very	nice,	native	Mac	look	and	feel.

Submodules
Sometimes,	you	need	to	use	the	source	to	another	project	in	yours,	but	it	is	not
possible	or	appropriate	to	combine	the	two	into	a	single	repository.	This	situation
can	be	awkward	to	handle.	You	may	not	want	to	keep	merging	the	entire	history
of	another	project	into	yours,	where	it	will	clutter	up	your	own	history	(though
the	“subtree”	merge	strategy	can	be	helpful	if	you	decide	to	do	this).

Git	has	a	feature	called	“submodules”	to	address	this:	it	allows	you	to	maintain

https://github.com/jonas/tig
https://sourceforge.net/projects/qgit/
https://github.com/
http://www.syntevo.com/smartgithg/index.html
http://gitboxapp.com/

another	Git	repository	as	a	tracked	object	within	a	subdirectory	of	yours.	In	the
tree	of	a	commit	in	your	repository,	the	submodule	reference	includes	a	commit
ID	in	the	foreign	repository,	indicating	a	particular	state	of	that	repository.	This
defines	the	content	of	the	corresponding	directory	for	your	commit,	while	still
leaving	all	its	refs	and	objects	out	of	your	repository	proper.

As	an	advanced	feature,	we	do	not	discuss	submodules	further	here;	see	git-
submodule(1)	for	details.

Chapter	14.	How	Do	I…?

This	final	chapter	presents	some	commands	and	recipes	for	accomplishing	a
grab	bag	of	specific	tasks.	Some	were	presented	earlier	and	are	repeated	or
referred	to	here	for	easy	reference,	and	some	are	new.	Remember	that	you	don’t
usually	want	to	edit	history	for	commits	you’ve	already	published	with	git
push.	Examples	that	refer	to	a	remote	repository	use	the	most	common	case,
origin.	rev	is	any	revision	name	as	described	in	Chapter	8.

…Make	and	Use	a	Central	Repository?
Suppose	you	have	an	account	named	ares	on	a	server	mars.example.com,
which	you	want	to	use	to	coordinate	your	own	work	on	a	project	foo	(perhaps
among	repositories	at	home,	work,	and	on	your	laptop).	First,	log	into	the	server
and	create	a	“bare”	repository	(which	you	will	not	use	directly):

$ ssh ares@mars.example.com

ares> git init --bare foo

Initialized empty Git repository in /u/ares/foo/.git

$ logout

If	this	is	for	a	project	with	existing	content,	connect	that	repository	to	the	new
remote	as	its	origin	(assuming	here	a	single,	local	master	branch):

$ cd foo

$ git remote add origin ares@mars.example.com:foo

$ git push -u origin master

...

To ares@mars.example.com:foo

* [new branch] master -> master

Branch master set up to track remote branch master

from foo.

You	can	just	use	plain	git push	from	then	on.	To	clone	this	repository

elsewhere:

$ git clone ares@mars.example.com:foo

…Fix	the	Last	Commit	I	Made?
Make	your	corrections	and	stage	them	with	git add,	then:

$ git commit --amend

Add	-a	to	automatically	stage	all	changes	to	tracked	files	(skipping	git add).
Add	-C HEAD	to	reuse	the	previous	commit	message	without	stopping	to	edit	it.

See	Changing	the	Last	Commit.

…Edit	the	Previous	n	Commits?
$ git rebase -i HEAD~n

The	history	involved	should	be	linear.	You	can	add	-p	to	preserve	merge
commits,	but	this	can	get	tricky	depending	on	the	changes	you	want	to	make.

See	Editing	a	Series	of	Commits.

…Undo	My	Last	n	Commits?
$ git reset HEAD~n

This	removes	the	last	n	commits	of	a	linear	history	from	the	current	branch,
leaving	the	corresponding	changes	in	your	working	files.	You	can	add	--hard	to
make	the	working	tree	reflect	the	new	branch	tip,	but	beware:	this	will	also
discard	any	current	uncommitted	changes,	which	you	will	lose	with	no	recourse.
See	Discarding	Any	Number	of	Commits.	This	will	also	work	if	there	is	a	merge
commit	in	the	range,	effectively	undoing	the	merge	for	this	branch;	see
Chapter	8	to	understand	how	to	interpret	HEAD~n	in	this	case.

…Reuse	the	Message	from	an	Existing	Commit?
$ git commit --reset-author -C rev

Add	--edit	to	edit	the	message	before	committing.

…Reapply	an	Existing	Commit	from	Another
Branch?

$ git cherry-pick rev

If	the	commit	is	in	a	different	local	repository,	~/other:

$ git --git-dir ~/other/.git format-patch -1 --stdout rev | git am

See:
Importing	Linear	History

git	cherry-pick

…List	Files	with	Conflicts	when	Merging?
git status	shows	these	as	part	of	its	report,	but	to	just	list	their	names:

$ git diff --name-only --diff-filter=U

…Get	a	Summary	of	My	Branches?
List	local	branches:	git branch

List	all	branches:	git branch -a

Get	a	compact	summary	of	local	branches	and	status	with	respect	to	their
upstream	counterparts:	git branch -vv

Get	detail	about	the	remote	as	well:	git remote show origin	(or	other
named	remote)

See	Notes.

…Get	a	Summary	of	My	Working	Tree	and	Index
State?

$ git status

Add	-sb	for	a	more	compact	listing;	see	the	“Short	Format”	section	of	git-
status(1)	on	how	to	interpret	this.

…Stage	All	the	Current	Changes	to	My	Working
Files?

$ git add -A

This	does	git add	for	every	changed,	new,	and	deleted	file	in	your	working
tree.	Add	--force	to	include	normally	ignored	files;	you	might	do	this	when
adding	a	new	release	to	a	“vendor	branch,”	which	tracks	updates	to	other
projects	you	obtain	by	means	other	than	Git	(e.g.,	tarballs).

…Show	the	Changes	to	My	Working	Files?
git diff	shows	unstaged	changes;	add	--stage	to	see	staged	changes	instead.
Add	--name-only	or	--name-status	for	a	more	compact	listing.

…Save	and	Restore	My	Working	Tree	and	Index
Changes?
git stash	saves	and	sets	your	outstanding	changes	aside,	so	you	can	perform

other	operations	that	might	be	blocked	by	them,	such	as	checking	out	a	different
branch.	You	can	restore	your	changes	later	with	git stash pop.	See	git	stash.

…Add	a	Downstream	Branch	Without	Checking
It	Out?

$ git branch foo origin/foo

This	adds	a	local	branch	and	sets	up	push/pull	tracking	as	if	you	had	done	git
checkout foo,	but	does	not	do	the	checkout	or	change	your	current	branch.

…List	the	Files	in	a	Specific	Commit?
$ git ls-tree -r --name-only rev

This	listing	is	restricted	to	the	current	directory;	add	--full-tree	for	a
complete	list.

…Show	the	Changes	Made	by	a	Commit?
git show rev	is	easier	that	git diff rev~ rev,	and	shows	the	author,
timestamp,	commit	ID,	and	message	as	well.	Add	-s	to	suppress	the	diff	and	just
see	the	latter	information;	use	--name-status	or	--stat	to	summarize	the
changes.	It	also	works	for	merge	commits,	showing	conflicts	from	the	merge	as
with	git log --cc	(see	Showing	Diffs).	The	default	for	rev	is	HEAD.

…Get	Tab	Completion	of	Branch	Names,	Tags,
and	So	On?
Git	comes	with	a	completion	package	for	bash	and	zsh,	installed	in	its	git-core
directory	as	git-completion.bash.	You	can	use	it	by	including	(or	“sourcing”)
this	file	in	your	shell	startup	file	(e.g.,	in	~/.bashrc):

define completion for Git

gitcomp=/usr/share/git-core/git-completion.bash

[-r $gitcomp] && source $gitcomp

Pressing	Tab	in	the	middle	of	a	Git	command	will	then	show	possible
completions	for	the	given	context.	For	example,	if	you	type	git checkout,
space,	and	then	press	Tab,	the	shell	will	print	the	branches	and	tag	names	you
could	use	here.	If	you	type	an	initial	part	of	one	of	these	names,	pressing	Tab
again	will	complete	it	for	you.	The	exact	behavior	of	completion	is	very
customizable;	see	your	shell	man	page	for	details.

There	is	also	a	git-prompt.sh,	which	will	make	your	shell	prompt	reflect	the
current	branch	status	when	your	working	directory	is	a	Git	repository.

…List	All	Remotes?
git remote	does	this;	add	-v	to	see	the	corresponding	URLs	configured	for
push	and	pull	(ordinarily	the	same):

$ git remote -v

origin http://olympus.example.com/aphrodite (fetch)

origin http://olympus.example.com/aphrodite (push)

…Change	the	URL	for	a	Remote?
$ git remote set-url remote URL

…Remove	Old	Remote-Tracking	Branches?
$ git remote prune origin

This	removes	tracking	for	remote	branches	that	have	been	deleted	upstream.

…Have	git	log:

Find	Commits	I	Made	but	Lost?
…perhaps	after	editing	history	with	git rebase -i	or	git reset,	or	deleting	a
branch:

$ git log -g

See	Double	Oops!.

Not	Show	the	diffs	for	Root	Commits?
A	root	commit	always	shows	the	addition	of	all	the	files	in	its	tree,	which	can	be
a	large	and	uninformative	list;	you	can	suppress	this	with:

$ git config [--global] log.showroot false

Show	the	Changes	for	Each	Commit?
git log -p	shows	the	complete	patch	for	each	commit	it	lists,	while	these
options	summarize	the	changes	in	different	ways:

$ git log --name-status

$ git log --stat

See	Listing	Changed	Files.

Show	the	Committer	as	well	as	the	Author?

$ git log --format=fuller

Index

A	NOTE	ON	THE	DIGITAL	INDEX

A	link	in	an	index	entry	is	displayed	as	the	section	title	in	which	that	entry	appears.
Because	some	sections	have	multiple	index	markers,	it	is	not	unusual	for	an	entry	to	have
several	links	to	the	same	section.	Clicking	on	any	link	will	take	you	directly	to	the	place	in
the	text	in	which	the	marker	appears.

A

A	(added),	Discarding	the	Last	Commit

access	control,	Access	Control

access,	remote,	Remote	Access

acyclic	graphs,	The	Commit	Graph

aliases,	Command	Aliases

already	is	up-to-date	message,	Notes

amend	feature,	Changing	the	Last	Commit,	Conflicts

annotated	tags,	Tag,	git	tag

araxis	merge	tool,	Merging	Content,	Merge	Tools

authentication,	Access	Control,	Remote	Access

author	identification,	Terminology,	Commit,	Author	versus	Committer

B

bare	repositories,	Selected	Options,	Bare	Repositories

bash	shell	syntax,	Shell,	Syntax	of	“Ignore	Patterns”

blobs,	Blob,	Understanding	Patches

brackets,	curly	vs.	square,	Command	Syntax

branches

automatic	set	up	of,	Push	and	Pull

benefits	of	Git	branches,	What	Is	Git?

commits	to,	Branches

comparing,	Comparing	Branches

configuration	variables,	Pull	with	Rebase

creating	new,	Making	a	New	Branch

default,	The	Default	Branch,	master

definition	of,	Merge	Conflicts

deleting,	Deleting	a	Branch,	Merging

deleting	from	origin	repository,	Deleting	a	Branch

deletion	of,	Branches

displaying,	Push	and	Pull

downstream,	…Add	a	Downstream	Branch	Without	Checking	It	Out?

feature	branches,	Branching,	Merging

fully	merged,	Deleting	a	Branch

listing	summary	of,	…Get	a	Summary	of	My	Branches?

log	of	operations,	Double	Oops!

merging,	Merging

moving	location	of,	Editing	a	Series	of	Commits

naming/renaming,	Losing	Your	Head,	Renaming	a	Branch,	Merging

oveview	of,	Branches

remote	tracking	of,	Push	and	Pull,	Notes,	Local,	Remote,	and	Tracking
Branches

removing	remote	tracking,	…Remove	Old	Remote-Tracking	Branches?

rewinding,	Discarding	Any	Number	of	Commits

sharing	work	between,	Sharing	Work,	Push	and	Pull,	Selected	Options,
Reference	Repositories

switching,	Switching	Branches

timing	of	deletion,	Deleting	a	Branch

topic	branches,	Branching

typography	conventions	used	for,	Typography

upstream	branches,	Deleting	a	Branch

uses	for,	What	Is	Git?

using	multiple,	Branching,	Reference	Repositories

vendor	branches,	Shortcuts,	…Stage	All	the	Current	Changes	to	My
Working	Files?

C

-C	HEAD,	Changing	the	Last	Commit

central	repositories,	…Make	and	Use	a	Central	Repository?

Chacon,	Scott,	Goals	of	This	Book

chains,	following,	Following	Chains

changes

adding	to	existing	file,	Adding	the	Changes	to	an	Existing	File

applying	selective,	Resolving	Merge	Conflicts

benefits	of	Git	changes,	What	Is	Git?

discarding,	Resolving	Merge	Conflicts

ignoring,	Syntax	of	“Ignore	Patterns”

listing	with	git	log,	Listing	Changed	Files

managing	with	commits,	Commit,	Cloning	a	Repository

overwritting	with	forced	push,	Notes

reconciling	conflicts,	Synchronization:	Push	and	Pull,	Merge	Conflicts

searching	for	with	pickaxe,	Searching	for	Changes:	The	“pickaxe”

showing,	…Show	the	Changes	Made	by	a	Commit?

staging	of,	The	Index,	Making	a	Commit,	…Stage	All	the	Current
Changes	to	My	Working	Files?

stashing,	A	Commit	Workflow,	Uncommitted	Changes,	Merging,	git
stash,	…Save	and	Restore	My	Working	Tree	and	Index	Changes?

uncommitted,	Uncommitted	Changes

undoing	after	commits,	Undoing	and	Editing	Commits–The	exec	Action

unstaging,	Unstaging	Changes

which	to	commit,	What	Makes	a	Good	Commit?

changes	not	staged	for	commit	message,	Adding	Partial	Changes

changes	to	be	committed	message,	Adding	Partial	Changes

checkouts,	supressing,	Push	and	Pull

Chef,	Basic	Configuration

cherry-picking,	Author	versus	Committer,	Branching,	Displaying	Sides,	git
cherry-pick

clone	command,	Sharing	Work,	Push	and	Pull,	Cloning	a	Repository

code	examples,	use	of,	Using	Code	Examples

colors,	enabling	use	of,	Color,	Defining	Your	Own	Formats,	Color

command	aliases,	Command	Aliases

command	syntax,	Shell

commands

git	add,	The	Index,	Importing	an	Existing	Project,	Adding	a	New	File,
Merge	Conflicts

git	add	--interactive	(-i),	Adding	Partial	Changes

git	add	-A,	Shortcuts

git	add	-p,	Adding	Partial	Changes

git	add	-u,	Shortcuts

git	add/mv/rm,	The	Index

git	branch	--all,	Push	and	Pull

git	branch	-vv,	Deleting	a	Branch,	Notes

git	checkout,	Push	and	Pull,	Switching	Branches,	Switching	Branches,
Check	Out	with	Merge

git	checkout	--orphan,	Commit

git	cherry,	git	cherry

git	cherry-pick,	Author	versus	Committer,	Branching,	git	cherry-pick

git	clean,	git	clean

git	clone,	Push	and	Pull,	Cloning	a	Repository

git	commit,	The	Index,	Importing	an	Existing	Project,	Changing	the
Index,	Making	a	Commit

git	commit	--amend,	Changing	the	Last	Commit,	Conflicts

git	commit	-a,	Shortcuts

git	config,	Basic	Configuration

git	diff,	git	diff

git	diff	--cached,	Making	a	Commit

git	diff	--staged,	The	Index,	git	diff	--staged

git	fetch,	Push	and	Pull,	Reference	Repositories

git	fetch	origin,	Push	and	Pull

git	filter-branch,	The	Big	Hammer:	git	filter-branch

git	for-each-ref,	Related	Commands

git	grep,	git	grep

git	init	directory,	Creating	a	New,	Empty	Repository

git	instaweb,	git	instaweb

git	log,	Branches,	Pagination,	Importing	an	Existing	Project,	Names
Relative	to	the	Reflog,	Viewing	History

git	log	--first-parent,	Branches

git	log	-g,	Double	Oops!

git	log	-p,	Resolving	Merge	Conflicts

git	ls-files,	The	Index

git	merge	--no-ff,	Notes

git	merge	--squash,	Notes

git	mergetool,	Merge	Tools

git	mv,	Renaming	a	File

git	notes,	git	notes

git	pull,	Merging,	Push	and	Pull,	Push	and	Pull,	Selected	Options,
Tracking	Other	Repositories,	Pulling

git	push,	Push	and	Pull,	Push	and	Pull,	Selected	Options,	Tracking
Other	Repositories,	Pushing,	Notes

git	rebase,	Editing	a	Series	of	Commits,	Rebasing,	Undoing	a	Rebase

git	remote	set-url,	Notes

git	remote	show	remote,	Notes

git	repack	-a,	Shared	Clone

git	replace,	Commit	Surgery:	git	replace

git	rerere,	Reusing	Previous	Merge	Decisions

git	reset,	Unstaging	Changes,	Discarding	the	Last	Commit

git	reset	--patch,	Unstaging	Changes

git	rev-list,	Naming	Commits,	Naming	Sets	of	Commits

git	rev-parse,	Naming	Commits,	git	rev-parse

git	revert,	Undoing	a	Commit

git	rm,	Removing	a	File

git	shortlog,	git	shortlog

git	show,	Notes

git	show-ref,	Related	Commands

git	stash,	git	stash

git	stash	--keep-index,	A	Commit	Workflow

git	status,	The	Index,	Pagination,	Making	a	Commit,	Merge	Conflicts

git	symbolic-ref,	Related	Commands,	Switching	Branches

git	update-index	--assume-unchanged,	Syntax	of	“Ignore	Patterns”

git	update-ref,	Related	Commands,	Switching	Branches

git	upload-pack,	Cloning	a	Repository

git/config,	Push	and	Pull,	Notes

commands,	differentiating	with	color,	Color

commit	graphs,	Terminology,	Commit,	The	Commit	Graph,	Merging
History,	Changing	the	Last	Commit,	Pull	with	Rebase,	Merging,
Comparing	Branches,	Rebasing

commit	history	(see	history)

commit	IDs,	Commit	ID

commit	messages,	Terminology,	Sharing	Work,	Cryptographic	Signature,
Text	Editor,	Commit	Messages,	Changing	the	Last	Commit,	Pull	with
Rebase,	Matching	a	Commit	Message,	Output	Formats,	git	notes,	…Reuse
the	Message	from	an	Existing	Commit?

commits

annotating,	git	notes

changing	the	last,	Changing	the	Last	Commit,	…Fix	the	Last	Commit	I
Made?

components	of,	Commit

current	commits,	Branches

definition	of,	Terminology

discarding	several,	Discarding	Any	Number	of	Commits

discarding	the	last,	Discarding	the	Last	Commit,	Pull	with	Rebase

displaying,	git	cherry

editing	a	series	of,	Editing	a	Series	of	Commits–The	exec	Action,	…Edit
the	Previous	n	Commits?

human-readable	names	for,	Tag

ID	abbreviation,	Commit	ID	Abbreviation

last	commits,	Branches

making	multiple,	A	Commit	Workflow

merge	commits,	Merging	History

naming	individual,	Naming	Commits–Addressing	Pathnames

naming	sets	of,	Naming	Sets	of	Commits–Naming	Sets	of	Commits

process	of,	Branches,	Making	a	Commit–A	Commit	Workflow

re-applying	by	cherry-picking,	Author	versus	Committer,	git	cherry-

pick

reapplying,	…Reapply	an	Existing	Commit	from	Another	Branch?

replacing	a	single,	Commit	Surgery:	git	replace

replaying,	Rebasing

retrieving	discarded,	Double	Oops!

rewriting,	Keeping	It	Real

role	of	the	index	in,	The	Index,	Changing	the	Index–Unstaging	Changes

root	vs.	merge,	Terminology

signing,	Cryptographic	Signature,	Cryptographic	Keys

tip	commits,	Branches,	Changing	the	Last	Commit

undoing,	Undoing	a	Commit,	…Undo	My	Last	n	Commits?

vs.	publishing,	Undoing	and	Editing	Commits

vs.	push,	Sharing	Work

youngest	vs.	most	recent,	Notes

committer	identification,	Terminology,	Commit,	Author	versus	Committer

committing	(to	the	repository),	Commit

comparisons,	efficient,	Object	IDs	and	SHA-1

complex	merges,	Merging	Content

configuration	management	systems,	Basic	Configuration

configuration	settings,	Getting	Started

content	merge,	Merging

content-based	addressing,	Object	IDs	and	SHA-1,	Renaming	a	File,
Undoing	and	Editing	Commits,	Clones	and	Hard	Links,	Details	on	Merging

core.abbrev,	Commit	ID	Abbreviation

core.editor,	Text	Editor

core.pager,	Pagination

could	not	apply	message,	Conflicts

credential	helpers,	Storing	Your	Password

cryptographic	hash	functions,	Security,	Cryptographic	Keys

Cryptographic	Signatures,	Cryptographic	Signature

curly	brackets,	Command	Syntax

CVS	(Concurrent	Versions	System),	What	Is	Git?,	Sharing	Work,	Object

IDs	and	SHA-1,	Renaming	a	File

D

DAGs	(directed	acyclic	graphs),	The	Commit	Graph

database	corrupted	error,	Shared	Clone

database	sharing,	Object	IDs	and	SHA-1

defaults,	setting,	Getting	Started

destructive	updates,	Notes

detached	HEAD	mode,	Losing	Your	Head

diffs	vs.	patches,	Understanding	Patches

diffs,	applying	plain,	Applying	Plain	Diffs

diffstat	summary,	Merging

directories

creating,	Creating	a	New,	Empty	Repository

locating,	Selected	Options

representing	empty,	Empty	Directories

disconnected	histories,	importing,	Importing	Disconnected	History

documentation,	accessing,	Getting	Help

downstream	branches,	…Add	a	Downstream	Branch	Without	Checking	It
Out?

E

efficient	comparisons,	Object	IDs	and	SHA-1

elements,	optional,	Command	Syntax

email	address,	setting,	Personal	Identification,	Rewriting	Names	and
Addresses:	The	“mailmap”

email	output	format,	Output	Formats

empty	directories,	Empty	Directories

F

FAQs	(frequently	asked	questions),	How	Do	I…?–Show	the	Changes	for
Each	Commit?

central	repositories,	…Make	and	Use	a	Central	Repository?

changing	URLs,	…List	All	Remotes?

downstream	branches,	…Add	a	Downstream	Branch	Without	Checking
It	Out?

editing	commits,	…Edit	the	Previous	n	Commits?

fixing	commits,	…Fix	the	Last	Commit	I	Made?

index	summary,	…Get	a	Summary	of	My	Working	Tree	and	Index
State?

list	branch	summary,	…Get	a	Summary	of	My	Branches?

list	files	in	a	commit,	…List	the	Files	in	a	Specific	Commit?

list	merge	conflicts,	…List	Files	with	Conflicts	when	Merging?

listing	remotes,	…List	All	Remotes?

reapply	existing	commits,	…Reapply	an	Existing	Commit	from	Another
Branch?

removing	remote-tracking	branches,	…Remove	Old	Remote-Tracking
Branches?

reusing	commit	messages,	…Reuse	the	Message	from	an	Existing
Commit?

set	up	tab	completion,	…Get	Tab	Completion	of	Branch	Names,	Tags,
and	So	On?

show	changes,	…Show	the	Changes	Made	by	a	Commit?

stage	all	changes,	…Stage	All	the	Current	Changes	to	My	Working
Files?

stashing	changes,	…Save	and	Restore	My	Working	Tree	and	Index
Changes?

undoing	commits,	…Undo	My	Last	n	Commits?

working	with	git	log,	Find	Commits	I	Made	but	Lost?

fast-forward	updates,	Pulling,	Pull	with	Rebase,	Notes

fatal:	bad	default	revision	message,	The	Default	Branch,	master

feature	branches,	Branching,	Merging

fetch	command,	Push	and	Pull,	Reference	Repositories

file	checkout

controling,	Selected	Options

supressing,	Push	and	Pull

with	merge,	Check	Out	with	Merge

file	permissions,	Selected	Options

files

.gitignore,	Ignoring	Files

.idx	files,	Where	Objects	Live

.pack	files,	Where	Objects	Live,	Reference	Repositories

adding	changes	to,	Adding	the	Changes	to	an	Existing	File

adding	to	the	index,	Adding	a	New	File,	Shortcuts

contents	as	blobs,	Blob

detecting	copies,	Detecting	Copies

expunging,	Expunging	Files

ignoring,	Ignoring	Files

including	all	in	index,	Shortcuts

INI	style,	Basic	Configuration

listing,	…List	the	Files	in	a	Specific	Commit?

listing	changed	with	git	log,	Listing	Changed	Files

listing	merge	conflicts,	…List	Files	with	Conflicts	when	Merging?

mailmap	files,	Rewriting	Names	and	Addresses:	The	“mailmap”

pathnames	for,	Addressing	Pathnames

removing	from	index,	Removing	a	File

removing	untracked,	git	clean

renaming,	Renaming	a	File,	Renaming	a	Branch,	Showing	and
Following	Renames	or	Copies

sharing	changes	in,	Sharing	Work,	Push	and	Pull,	Cloning	a	Repository,
Reference	Repositories

single-instance	storage	of,	Object	IDs	and	SHA-1

tracking	changes	in,	What	Is	Git?,	Terminology,	Object	IDs	and	SHA-1,
Renaming	a	File,	Uncommitted	Changes

forced	push,	Notes

G

garbage	collection,	Shared	Clone,	Reference	Repositories

Git

abilities	of,	What	Is	Git?

accessing	help	files,	Getting	Help

approach	to	learning,	Understanding	Git

configuration	of,	Getting	Started–Getting	Help

mode	values	in,	Tree

security	in,	Security,	Reference	Repositories,	Access	Control

strengths	of,	What	Is	Git?,	Sharing	Work,	Blob,	Object	IDs	and	SHA-1,
Renaming	a	File,	Undoing	and	Editing	Commits

terminology	used,	Terminology

Unix	basis	of,	Unix

version	discussed,	Goals	of	This	Book

.git	directory,	Selected	Options

.git/hooks,	Git	Hooks

.git/info/exclude,	Ignoring	Files

.gitignore,	Ignoring	Files

git	add,	The	Index,	Importing	an	Existing	Project,	Adding	a	New	File,
Merge	Conflicts

git	add	--interactive	(-i),	Adding	Partial	Changes

git	add	-A,	Shortcuts

git	add	-p,	Adding	Partial	Changes

git	add	-u,	Shortcuts

git	add/mv/rm,	The	Index

git	branch	--all,	Push	and	Pull

git	branch	-vv,	Deleting	a	Branch,	Notes

git	checkout,	Push	and	Pull,	Switching	Branches,	Switching	Branches,
Check	Out	with	Merge

git	checkout	--orphan,	Commit

git	cherry,	git	cherry

git	cherry-pick,	Author	versus	Committer,	Branching,	git	cherry-pick

git	clean,	git	clean

git	clone,	Push	and	Pull,	Cloning	a	Repository

git	commit,	The	Index,	Importing	an	Existing	Project,	Changing	the	Index,
Making	a	Commit

git	commit	--amend,	Changing	the	Last	Commit,	Conflicts

git	commit	-a,	Shortcuts

git	config,	Basic	Configuration

git	config	gc.pruneexpire	never,	Reference	Repositories

git	diff,	git	diff

git	diff	--cached,	Making	a	Commit

git	diff	--staged,	The	Index,	git	diff	--staged

git	fetch	origin,	Push	and	Pull

git	filter-branch,	The	Big	Hammer:	git	filter-branch

git	for-each-ref,	Related	Commands

git	grep,	git	grep

git	init	directory,	Creating	a	New,	Empty	Repository,	The	Default	Branch,
master

git	instaweb,	git	instaweb

git	log

command	format,	Command	Format

commit	ordering,	Commit	Ordering

comparing	branches,	Comparing	Branches

composite	log,	Names	Relative	to	the	Reflog

custom	output	formats,	Defining	Your	Own	Formats

date	style,	Date	Style

decoration,	Decoration

detecting	copies,	Detecting	Copies

displaying	sides,	Displaying	Sides

enabling	color	in,	Pagination

finding	commits,	Find	Commits	I	Made	but	Lost?

limiting	commits	shown,	Limiting	Commits	to	Be	Shown

listing	changed	files,	Listing	Changed	Files

of	most	recent	commit,	Importing	an	Existing	Project

on	master	branch,	Branches

output	formats,	Output	Formats

reflog,	Reflog

regular	expressions	and,	Regular	Expressions

renaming	and,	Showing	and	Following	Renames	or	Copies

rewriting	personal	information,	Rewriting	Names	and	Addresses:	The
“mailmap”

searching	for	changes,	Searching	for	Changes:	The	“pickaxe”

showing	diffs,	Showing	Diffs

showing	notes,	Showing	Notes

viewing	history	with,	Viewing	History

word	diff,	Word	Diff

git	log	--first-parent,	Branches

git	log	-g,	Double	Oops!

git	log	-p,	Resolving	Merge	Conflicts

git	log	origin/foo,	Notes

git	ls-files,	The	Index

git	merge	--no-ff,	Notes

git	merge	--squash,	Notes

git	mergetool,	Merge	Tools

git	mv,	Renaming	a	File

git	notes,	git	notes

Git	Pocket	Guide	(Silverman)

attributions	appreciated,	Using	Code	Examples

conventions	used	in,	Conventions	Used	in	This	Book

goals	of,	Goals	of	This	Book

git	pull,	Merging,	Push	and	Pull,	Push	and	Pull,	Selected	Options,	Tracking
Other	Repositories,	Pulling

git	push,	Push	and	Pull,	Push	and	Pull,	Selected	Options,	Tracking	Other
Repositories,	Pushing,	Notes

git	rebase,	Editing	a	Series	of	Commits,	Rebasing,	Undoing	a	Rebase

git	remote	set-url,	Notes

git	remote	show	remote,	Notes

git	repack	-a,	Shared	Clone

git	replace,	Commit	Surgery:	git	replace

git	rerere,	Reusing	Previous	Merge	Decisions

git	reset,	Unstaging	Changes,	Discarding	the	Last	Commit

git	reset	--patch,	Unstaging	Changes

git	rev-list,	Naming	Commits,	Naming	Sets	of	Commits

git	rev-parse,	Naming	Commits,	git	rev-parse

git	revert,	Undoing	a	Commit

git	rm,	Removing	a	File

git	shortlog,	git	shortlog

git	show,	Notes

git	show-ref,	Related	Commands

git	show-ref	--abbrev	master,	Push	and	Pull

git	show-ref	master,	Importing	an	Existing	Project

git	stash,	git	stash

git	stash	--keep-index,	A	Commit	Workflow

git	status,	The	Index,	Pagination,	Making	a	Commit,	Merge	Conflicts

git	symbolic-ref,	Related	Commands,	Switching	Branches

git	update-index	--assume-unchanged,	Syntax	of	“Ignore	Patterns”

git	update-ref,	Related	Commands,	Switching	Branches

git	upload-pack,	Cloning	a	Repository

git/config,	Push	and	Pull,	Notes

GitHub,	What	Is	Git?,	Commit	Messages

Gitolite,	Access	Control

Gitorious,	Access	Control

Gitosis,	Access	Control

gitweb,	Commit	Messages

GnuPG,	Cryptographic	Signature,	Cryptographic	Keys

graphics	toolkits,	Visual	Tools

grep	command,	git	grep

gvimdiff	merge	tool,	Merge	Tools

H

hard	links,	Refs,	Clones	and	Hard	Links

hash	collisions,	Object	IDs	and	SHA-1

hash	functions,	Object	IDs	and	SHA-1

HEAD	commits,	Branches

HEAD	ref,	Branches,	Push	and	Pull,	Switching	Branches

help	system,	accessing,	Getting	Help

history

displaying	via	commit	graph,	Double	Oops!

editing,	Editing	History–Updating	Tags

linear,	Names	Relative	to	a	Given	Commit

loss	of,	Undoing	and	Editing	Commits

loss	of	during	deletion,	Deleting	a	Branch

nonlinear,	Merge	Conflicts

renaming	files	and,	Renaming	a	File,	Renaming	a	Branch

viewing,	Viewing	History–git	shortlog

hooks,	Git	Hooks

I

.idx	files,	Where	Objects	Live

ignore	pattern	syntax,	Syntax	of	“Ignore	Patterns”

index

conflict	resolution	and,	Details	on	Merging

definition	of,	The	Index

preparing	for	a	commit,	Changing	the	Index–Unstaging	Changes

resetting,	Unstaging	Changes

summary	of,	…Get	a	Summary	of	My	Working	Tree	and	Index	State?

interactive	rebase,	Rebasing

K

kdiff	merge	tool,	Merging	Content

kdiff3	merge	tool,	Merge	Tools

L

last	commits,	Branches

lightweight	tags,	Tag,	git	tag

linear	histories,	importing,	Importing	Linear	History

Linux,	Unix

local	repositories,	Clones	and	Hard	Links

Loeliger,	Jon,	Goals	of	This	Book

loose	objects,	Where	Objects	Live,	Reference	Repositories

M

mailmap	file,	Rewriting	Names	and	Addresses:	The	“mailmap”

making	a	commit,	Commit

(see	also	commits)

man	pages,	Goals	of	This	Book,	Typography

master	branches,	Branches,	Sharing	Work,	Branches,	Merging,	Importing
an	Existing	Project,	Branching,	The	Default	Branch,	master

mbox	style	output,	Output	Formats

merge

aborting,	Pull	with	Rebase,	Merge	Conflicts,	Notes

automatic	merging,	Push	and	Pull,	Pull	with	Rebase,	Notes

content	conflicts	and,	Merging	Content,	Undoing	a	Commit,	Conflicts,
Synchronization:	Push	and	Pull,	Merge	Conflicts–Merge	Conflicts,
Resolving	Merge	Conflicts

definition	of,	Merging

fully	merged,	Deleting	a	Branch

history	of,	Merging	History,	Merge	Conflicts

octopus	merge,	Merging,	Why	the	Octopus?

pairwise	merge,	Why	the	Octopus?

process	details,	Details	on	Merging

reusing	previous,	Reusing	Previous	Merge	Decisions

simple	merge,	Branches

strategies	for,	Merge	Strategies

three-way,	Check	Out	with	Merge,	Details	on	Merging

timing	of,	Pull	with	Rebase,	Merging,	Merge	Strategies

tools	for,	Merge	Tools,	Custom	Merge	Tools

uses	for,	What	Is	Git?,	Merging,	Branching,	Merging

merge	base,	Merging	History,	Details	on	Merging

merge	bubble,	Pull	with	Rebase

merge	commits,	Terminology,	Commit,	Merging	History,	Merging

merge	conflicts,	resolving,	Resolving	Merge	Conflicts

messages

already	is	up-to-date,	Notes

changes	not	staged	for	commit,	Adding	Partial	Changes

changes	to	be	commited,	Adding	Partial	Changes

CONFLICT	(content),	Merge	Conflicts

could	not	apply,	Conflicts

database	corrupted,	Shared	Clone

detached	head,	Losing	Your	Head

fatal:	bad	default	revision,	The	Default	Branch,	master

please,	commit	your	changes	or	stash	them…,	Uncommitted	Changes

reinitializing,	Creating	a	New,	Empty	Repository

(see	also	commit	messages)

mode	bits,	Tree,	Details	on	Merging,	Understanding	Patches

N

-n,	Push	and	Pull

network	protocols,	Remote	Access

--no-abbrev-commit,	Commit	ID	Abbreviation

non-linear	histories,	importing,	Importing	Nonlinear	History

O

object	identifiers,	Object	IDs	and	SHA-1,	Commit	ID

object	store,	The	Object	Store–Tag

objects

locating,	Following	Chains

storage	of,	Where	Objects	Live

octopus	merge,	Merging,	Why	the	Octopus?

optional	elements,	Command	Syntax

origin	repositories,	Shared	Clone

osxkeychain,	Storing	Your	Password

P

.pack	files,	Where	Objects	Live,	Reference	Repositories

packs,	Where	Objects	Live,	Reference	Repositories

pagination,	controlling,	Pagination

pairwise	merge,	Why	the	Octopus?

parameters,	setting,	Getting	Started

parent	commits,	Terminology,	Commit,	Merging	History,	Changing	the
Last	Commit,	Merge	Conflicts

partial	changes,	Adding	Partial	Changes

passwords,	SSH,	Storing	Your	Password

patch	subcommand,	Adding	Partial	Changes

patches

basics	of,	Understanding	Patches

vs.	diffs,	Understanding	Patches

with	commit	information,	Patches	with	Commit	Information

pathnames,	Addressing	Pathnames

paths,	unmerged,	Merge	Conflicts,	Details	on	Merging

personal	configuration	settings,	Basic	Configuration,	Rewriting	Names	and
Addresses:	The	“mailmap”

pickaxe,	Searching	for	Changes:	The	“pickaxe”

plain	diffs,	Applying	Plain	Diffs

please,	commit	your	changes	or	stash	them…,	Uncommitted	Changes

preferences,	setting,	Getting	Started

Pro	Git	(Chacon),	Goals	of	This	Book

projects

components	of,	Terminology

developing	in	Git,	What	Is	Git?,	What	Is	Git?,	Terminology,	Sharing
Work,	Selected	Options,	What	Makes	a	Good	Commit?,	Branching,
Bare	Repositories

importing	existing,	Importing	an	Existing	Project

pruning,	Reference	Repositories

public-key	authentication,	SSH

publishing	vs.	committing,	Undoing	and	Editing	Commits

pull	command,	Sharing	Work,	Push	and	Pull,	Selected	Options,	Tracking
Other	Repositories,	Pulling

pull	with	rebase,	Pull	with	Rebase

push	command,	Sharing	Work,	Push	and	Pull,	Selected	Options,	Tracking
Other	Repositories,	Pushing,	Notes

push.default	configuration	variable,	Push	Defaults

R

read-only	access,	Remote	Access

rebasing,	Editing	a	Series	of	Commits,	Pushing,	Pull	with	Rebase,	Rebasing,
Undoing	a	Rebase

recursive	merge	strategy,	Merge	Strategies

redundancy,	Blob

ref	names,	Ref	Name

reference	repositories,	Reference	Repositories

reflog	feature,	Double	Oops!,	Names	Relative	to	the	Reflog,	Reflog

refs	(references),	Refs

refspec,	Push	and	Pull

regular	expressions,	Matching	a	Commit	Message,	Regular	Expressions,	git
grep

reinitializing	messages,	Creating	a	New,	Empty	Repository

release	branches,	Branches

release	notes,	preparation	of,	git	shortlog

reliability,	Blob,	Object	IDs	and	SHA-1

remote	access,	Remote	Access–Storing	Your	Password

HTTP	protocol,	HTTP

passwords,	Storing	Your	Password

ssh,	SSH

usernames,	Storing	Your	Username

remote	repositories,	Cloning	a	Repository,	Clones	and	Hard	Links,	Remote
Access,	…List	All	Remotes?

remote-tracking	refs,	Push	and	Pull

rename	function,	Renaming	a	File

replaying	commits,	Rebasing

repositories

bare	repositories,	Selected	Options,	Bare	Repositories

cloning,	Cloning	a	Repository–Reference	Repositories

commit	graphs,	Terminology,	The	Commit	Graph

comparisons	of,	Object	IDs	and	SHA-1

components	of,	Push	and	Pull

creating	central	repositories,	…Make	and	Use	a	Central	Repository?

creating	new,	Creating	a	New,	Empty	Repository

definition	of,	What	Is	Git?,	Terminology

editing	history	of,	Editing	History–Updating	Tags

importing,	Importing	from	One	Repository	to	Another–Importing
Nonlinear	History

local	repositories,	Clones	and	Hard	Links

object	storage	in,	Where	Objects	Live

reference	repositories,	Reference	Repositories

remote	repositories,	Cloning	a	Repository,	Clones	and	Hard	Links,
Remote	Access

searching	with	regular	expressions,	git	grep

security	of,	Security,	Reference	Repositories,	Access	Control

sharing	work	between,	Sharing	Work,	Push	and	Pull,	Selected	Options,
Tracking	Other	Repositories

showing	properties	of,	git	rev-parse

submodules	of,	Submodules

synchronizing,	Synchronization:	Push	and	Pull–Notes

tip	commits	to,	Branches,	Branches

tracking,	Tracking	Other	Repositories,	Local,	Remote,	and	Tracking

Branches

web-based	browser	for,	git	instaweb

revisions,	naming	syntax,	Names	Relative	to	a	Given	Commit

rewinding	a	branch,	Discarding	Any	Number	of	Commits

root	commits,	Terminology,	Commit

S

Safari	Books	Online,	Safari®	Books	Online

security,	Security,	Reference	Repositories,	Access	Control

SHA-1	(Secure	Hash	Algorithm	1)

abbreviation	of,	Commit	ID	Abbreviation,	Commit	ID

hash	function,	Object	IDs	and	SHA-1,	Object	IDs	and	SHA-1

security	and,	Security

shared	clones,	Shared	Clone,	Reference	Repositories

shared	repositories,	Selected	Options,	Reference	Repositories

shell	globs,	Syntax	of	“Ignore	Patterns”

shell	syntax,	Shell,	Syntax	of	“Ignore	Patterns”

simple	refs,	Refs,	Ref	Name

single-instance	store,	Object	IDs	and	SHA-1

social	coding,	What	Is	Git?

spurious	merges,	Pull	with	Rebase

square	brackets,	Command	Syntax

ssh	URL	scheme,	Cloning	a	Repository,	Notes,	SSH

staging	changes,	The	Index,	…Stage	All	the	Current	Changes	to	My
Working	Files?

stashing	changes,	A	Commit	Workflow,	Uncommitted	Changes,	Merging,
git	stash,	…Save	and	Restore	My	Working	Tree	and	Index	Changes?

storage,	single-instance,	Object	IDs	and	SHA-1

structural	merge,	Merging

subdirectories,	shifting	to,	Shifting	to	a	Subdirectory

submodules,	Submodules

Subversion,	What	Is	Git?,	Sharing	Work,	Renaming	a	File

symbolic	links,	Tree,	Refs,	Switching	Branches

symrefs	(symbolic	refs),	Refs,	Ref	Name

T

tab	completion,	…Get	Tab	Completion	of	Branch	Names,	Tags,	and	So	On?

tags,	Tag,	Cryptographic	Keys,	Updating	Tags,	git	tag

text	editor,	customization	of,	Text	Editor

three-way	merge,	Details	on	Merging

timestamps,	Terminology,	Author	versus	Committer,	Tag

tip	commits,	Branches,	Branches,	Changing	the	Last	Commit

topic	branches,	Branches,	Sharing	Work,	Branching

transport	schemes,	Cloning	a	Repository

tree	objects,	Tree

trees

components	of,	Tree

definition	of,	Terminology

displaying,	The	Index,	Push	and	Pull

U

un-committing,	Discarding	the	Last	Commit

uncommitted	changes,	Uncommitted	Changes

Unix,	Unix,	Tree,	Refs

Unix	mbox	style,	Output	Formats

unmerged	paths,	Merge	Conflicts,	Details	on	Merging

unstaged	changes,	displaying,	Making	a	Commit

untracked	files,	Ignoring	Files,	Adding	the	Changes	to	an	Existing	File,
Untracked	Files,	git	clean

updates,	fast-forward,	Pulling,	Pull	with	Rebase,	Notes

upstream	branches,	Deleting	a	Branch

URLs

fixing,	Notes,	…List	All	Remotes?

specifying,	Cloning	a	Repository

usernames,	Storing	Your	Username

V

vendor	branches,	Shortcuts,	…Stage	All	the	Current	Changes	to	My
Working	Files?

version	control

definition	of,	What	Is	Git?

distributed	vs.	centralized,	What	Is	Git?,	Sharing	Work

for	software	development,	Branching,	git	shortlog

private	vs.	public,	Sharing	Work,	Undoing	and	Editing	Commits

renaming	files	and,	Renaming	a	File,	Renaming	a	Branch,	Showing	and
Following	Renames	or	Copies

repeated	conflicts,	Details	on	Merging

timing	of	commits,	What	Makes	a	Good	Commit?,	Pull	with	Rebase

Version	Control	with	Git	(Loeliger),	Goals	of	This	Book

vi	text	editor,	Text	Editor

visual	tools,	Visual	Tools

About	the	Author
Richard	E.	Silverman	has	a	B.A.	in	computer	science	and	an	M.A.	in	pure
mathematics.	Richard	has	worked	in	the	fields	of	networking,	formal	methods	in
software	development,	public-key	infrastructure,	routing	security,	and	Unix
systems	administration.	He	co-authored	the	SSH,	The	Secure	Shell:	The
Definitive	Guide,	2e	and	the	Linux	Security	Cookbook.

Git	Pocket	Guide
Richard	E.	Silverman
Editor
Mike	Loukides

Editor
Meghan	Blanchette

Revision	History

2013-06-24 First	release

2013-07-10 Second	release

2013-08-30 Third	release

Copyright	©	2013	Richard	Silverman
O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional	use.	Online	editions	are
also	available	for	most	titles	(http://my.safaribooksonline.com).	For	more	information,	contact	our
corporate/institutional	sales	department:	800-998-9938	or	corporate@oreilly.com.

Nutshell	Handbook,	the	Nutshell	Handbook	logo,	and	the	O’Reilly	logo	are	registered	trademarks	of
O’Reilly	Media,	Inc.	Git	Pocket	Guide,	the	image	of	a	long-eared	bat,	and	related	trade	dress	are	trademarks
of	O’Reilly	Media,	Inc.

Many	of	the	designations	used	by	manufacturers	and	sellers	to	distinguish	their	products	are	claimed	as
trademarks.	Where	those	designations	appear	in	this	book,	and	O’Reilly	Media,	Inc.,	was	aware	of	a
trademark	claim,	the	designations	have	been	printed	in	caps	or	initial	caps.

While	every	precaution	has	been	taken	in	the	preparation	of	this	book,	the	publisher	and	author	assume	no
responsibility	for	errors	or	omissions,	or	for	damages	resulting	from	the	use	of	the	information	contained
herein.

O’Reilly	Media
1005	Gravenstein	Highway	North
Sebastopol,	CA	95472

2013-09-03T07:59:48-07:00

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

	Preface
	What Is Git?
	Goals of This Book
	Conventions Used in This Book
	Unix
	Shell
	Command Syntax
	Typography

	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	1. Understanding Git
	Overview
	Terminology
	Branches
	Sharing Work

	The Object Store
	Blob
	Tree
	Commit
	Author versus Committer
	Cryptographic Signature

	Tag

	Object IDs and SHA-1
	Security

	Where Objects Live
	The Commit Graph
	Refs
	Related Commands

	Branches
	The Index
	Merging
	Merging Content
	Merging History

	Push and Pull
	Notes

	2. Getting Started
	Basic Configuration
	Personal Identification
	Text Editor
	Commit ID Abbreviation
	Pagination
	Color
	Cryptographic Keys
	Command Aliases
	Getting Help
	References

	Creating a New, Empty Repository
	Selected Options

	Importing an Existing Project
	Ignoring Files
	Syntax of “Ignore Patterns”

	3. Making Commits
	Changing the Index
	Adding a New File
	Adding the Changes to an Existing File
	Adding Partial Changes
	Shortcuts
	Removing a File
	Renaming a File
	Unstaging Changes

	Making a Commit
	Commit Messages
	What Makes a Good Commit?
	Shortcuts
	Empty Directories
	A Commit Workflow

	4. Undoing and Editing Commits
	Changing the Last Commit
	Double Oops!

	Discarding the Last Commit
	Discarding Any Number of Commits

	Undoing a Commit
	Partial Undo

	Editing a Series of Commits
	Conflicts
	The exec Action

	5. Branching
	The Default Branch, master
	Making a New Branch
	Switching Branches
	Uncommitted Changes
	Check Out with Merge

	Untracked Files
	Losing Your Head

	Deleting a Branch
	Renaming a Branch

	6. Tracking Other Repositories
	Cloning a Repository
	Clones and Hard Links
	Shared Clone

	Bare Repositories
	Reference Repositories

	Local, Remote, and Tracking Branches
	Synchronization: Push and Pull
	Pulling
	Pushing
	Push Defaults
	Pull with Rebase
	Notes

	Access Control

	7. Merging
	Merge Conflicts
	Resolving Merge Conflicts
	Notes

	Details on Merging
	Merge Tools
	Notes

	Custom Merge Tools
	Merge Strategies
	Why the Octopus?
	Reusing Previous Merge Decisions

	8. Naming Commits
	Naming Individual Commits
	Commit ID
	Ref Name
	Names Relative to a Given Commit
	Names Relative to the Reflog
	The Upstream Branch
	Matching a Commit Message
	Notes

	Following Chains
	Addressing Pathnames

	Naming Sets of Commits

	9. Viewing History
	Command Format
	Output Formats
	Defining Your Own Formats
	Notes

	Limiting Commits to Be Shown
	Regular Expressions
	Reflog
	Decoration
	Date Style
	Listing Changed Files
	Showing and Following Renames or Copies
	Detecting Copies

	Rewriting Names and Addresses: The “mailmap”
	Shortening Names

	Searching for Changes: The “pickaxe”
	Showing Diffs
	Color
	Word Diff

	Comparing Branches
	Displaying Sides

	Showing Notes
	Commit Ordering
	History Simplification
	Related Commands
	git cherry
	git shortlog

	10. Editing History
	Rebasing
	Undoing a Rebase

	Importing from One Repository to Another
	Importing Disconnected History
	Importing Linear History
	Importing Nonlinear History

	Commit Surgery: git replace
	Keeping It Real

	The Big Hammer: git filter-branch
	Examples
	Expunging Files
	Shifting to a Subdirectory
	Updating Tags

	Notes

	11. Understanding Patches
	Applying Plain Diffs
	Patches with Commit Information

	12. Remote Access
	SSH
	HTTP
	Storing Your Username
	Storing Your Password
	References

	13. Miscellaneous
	git cherry-pick
	git notes
	git notes Subcommands

	git grep
	Combining Regular Expressions
	What to Search
	What to Show
	How to Match

	git rev-parse
	git clean
	git stash
	Subcommands
	save
	list
	show
	pop
	apply
	branch <branchname> [stash]
	drop [stash]
	clear

	git show
	git tag
	Deleting a Tag from a Remote
	Following Tags
	Backdating Tags

	git diff
	git diff
	git diff --staged
	git diff <commit>
	git diff <A>
	Options and Arguments

	git instaweb
	Git Hooks
	Visual Tools
	Submodules

	14. How Do I…?
	…Make and Use a Central Repository?
	…Fix the Last Commit I Made?
	…Edit the Previous n Commits?
	…Undo My Last n Commits?
	…Reuse the Message from an Existing Commit?
	…Reapply an Existing Commit from Another Branch?
	…List Files with Conflicts when Merging?
	…Get a Summary of My Branches?
	…Get a Summary of My Working Tree and Index State?
	…Stage All the Current Changes to My Working Files?
	…Show the Changes to My Working Files?
	…Save and Restore My Working Tree and Index Changes?
	…Add a Downstream Branch Without Checking It Out?
	…List the Files in a Specific Commit?
	…Show the Changes Made by a Commit?
	…Get Tab Completion of Branch Names, Tags, and So On?
	…List All Remotes?
	…Change the URL for a Remote?
	…Remove Old Remote-Tracking Branches?
	…Have git log:
	Find Commits I Made but Lost?
	Not Show the diffs for Root Commits?
	Show the Changes for Each Commit?
	Show the Committer as well as the Author?

	Index
	About the Author
	Copyright

